ROCm Documentation
Release 5.7.1

Advanced Micro Devices, Inc.

Oct 31, 2023

CONTENTS

1 What is ROCm? 3
1.1 ROCmon Radeon e 3
1.2 ROCm on Windows o o 0 e e 4

1.2.1 ROCm release versioning oot vt 4
1.2.2 Windows Documentation implications 0., 5
1.2.3 Windows Builds from Source e 5

2 Quick Start (Linux) 7
2.1 Add Repositories o o v o e e e e e e e e e 7
2.2 Install Arivers e e e e e e e e e 12
2.3 Install ROCm runtimes o e 12
2.4 Reboot the system oL e 13

3 Deploy ROCm on Linux 15
3.1 Prepare to Install L 15
3.2 Choose your install method L 15
3.3 See AISO . . .o e 15
3.4 ROCm Installation Options (Linux)o ittt 15

3.4.1 Package Manager versus AMDGPU Installer? 16

3.4.2 Single Version ROCm install versus Multi-Version 16

3.4.2.1 Single-version Installationo oL oo 16

3.4.2.2 Multi-version Installation Lo 16

3.5 Installation Prerequisites (Linux) o o e 17

3.5.1 Confirm the System Has a Supported Linux Distribution Version 17

3.5.1.1 Check the Linux Distribution and Kernel Version on Your System 17

3.5.1.1.1 Linux Distribution Information, 17

3.5.1.1.2 Kernel Information 18

3.5.2 Additional package repositories 18

3.5.3 Kernel headers and development packages 19

3.5.4 Setting Permissions for Groups 20

3.6 Installation via Package manager L L 20

3.6.1 See Also 20

3.6.2 Installation (Linux) L 20
3.6.2.1 Understanding the Release-specific AMDGPU and ROCm Repositories on

Linux Distributions e 20

3.6.2.2 Step by Step Instructions Lo 21

3.6.2.3 Post-install Actions and Verification Process 28

3.6.2.3.1 Post-install Actions L o 28

3.6.2.3.2 Verifying Kernel-mode Driver Installation 29

3.6.2.3.3 Verifying ROCm Installation 29

3.6.2.3.4 Verifying Package Installation 29

3.6.3 Upgrade ROCm with the package manager 29
3.6.3.1 Upgrade Steps o 30

3.6.3.1.1 Update the AMDGPU repository 30

3.6.3.1.2 Upgrade the kernel-mode driver & reboot 33

3.6.3.1.3 Update the ROCm repository 33

3.6.3.1.4 Upgrade the ROCm packages 35

3.6.3.2 Verification Process 35

3.6.4 Uninstallation with package manager (Linux) 35

3.6.5 Package Manager Integration L o oL, 38
3.6.5.1 ROCm Package Naming Conventions 38

3.6.5.2 Components of ROCm Programming Models 39

3.6.5.3 Packages in ROCm Programming Models 40

3.7 AMDGPU Install Seript e 41
371 See Also 41

3.7.2 Imstallation with install script o oo 41
3.7.2.1 Download the Installer Script 42

3.7.22 USE CASES « v v v v v e e e e e e e e e e e e 44

3.7.2.3 Single-version ROCm Installation 45

3.7.2.4 Multi-version ROCm Installation 45

3.7.2.4.1 Add Required Repositories L. 45

3.7.2.4.2 Install packages o o 48

3.7.2.5 Additional options e 48

3.7.2.5.1 Unattended installation 48

3.7.2.5.2 Skipping kernel mode driver installation 48

3.7.3 Upgrading with the Installer Script (Linux) 49

3.7.4 Installer Script Uninstallation (Linux) 49

4 Quick Start (Windows) 51
4.1 System Requirements L 51
4.2 HIP SDK Installation 0 e 51
4.2.1 Download the installer L 51

4.2.2 Launching the installer L 51

4.2.3 Customizing the install L o 54
4.2.3.1 HIP SDK Installer o 54

4.2.3.2 AMD Display Driver 56

4.2.4 Installing Components 56

4.2.5 Installation Complete L 58

4.3 Uninstallation oL 58
5 Install ROCm (HIP SDK) on Windows 61
5.1 Prepare to Install L 61
5.2 Choose your install method L oo 61
5.3 Post Installationo 61
5.4 See AlSO . . .o e 61
5.5 Installation Prerequisites (Windows) Lo o 62
5.5.1 Confirm the System Is Supported 62
5.5.1.1 Check the Windows Editions and Update Version on Your System 62

5.5.1.1.1 Command Line Check 62

5.5.1.1.2 Graphical Check o 62

5.6 Graphical Installation oL L 65
5.6.1 See Also e e 65

5.6.2 Installation Using the Graphical Interface 65
5.6.2.1 System Requirements L 65

ii

5.7

6.1
6.2

6.3

5.6.2.2 HIP SDK Installation
5.6.2.2.1 Download the installer
5.6.2.2.2 Launching the installer
5.6.2.2.3 Customizing the install
5.6.2.2.3.1 HIP SDK Installer
5.6.2.2.3.2 AMD Display Driver
5.6.2.2.4 Installing Components
5.6.2.2.5 Installation Complete
5.6.3 Upgrading Using the Graphical Interface
5.6.4 Uninstallation Using the Graphical Interface
5.6.4.1 Uninstallation L e
Command Line Installation e
5.7.1 See Also . . . o e e e e
5.7.2 Installation Using the Command Line Interface
5.7.2.1 System Requirements o
5.7.2.2 HIP SDK Installation
5.7.2.2.1 Launching the Installer From the Command Line
5.7.3 Upgrading Using the Graphical Interface
5.7.3.1 HIP SDK Upgrade« . . oottt e e
5.7.4 Uninstallation Using the Command Line Interface.
5.7.4.1 HIP SDK Uninstallation
5.7.4.1.1 Launching the Installer From the Command Line

6 Deploy ROCm Docker containers
Prerequisites oL e e e e e e e
Accessing GPUs in containers e
6.2.1 Restricting a container to a subset of the GPUs
6.2.2 Additional Options e e e e e e
Docker images in the ROCm ecosystem o
6.3.1 Base images e e e e e e e e e e
6.3.2 Applications e e e

7 Release Notes

7.1

ROCm 5.7.1

7.1.1 What’s New in This Release
7.1.2 ROCm Libraries o o o e

7.1.2.1
7.1.2.2

rocBLAS
HIP 5.7.1 (for ROCm 5.7.1) o i e e

7.1.3 Fixed defects L
7.1.4 Library Changes in ROCM 5.7.1 e

7.1.4.1

8 Changelog

8.1

ROCm 5.7.1

hipSOLVER 1.8.2 e
7.1.4.1.1 Fixed o o o e e e e e e e

8.1.1 What’s New in This Release
8.1.2 ROCm Libraries

8.1.2.1
8.1.2.2

rocBLAS e
HIP 5.7.1 (for ROCm 5.7.1) o

8.1.3 Fixed defects e
8.1.4 Library Changes in ROCM 5.7.1 it

8.1.4.1

hipSOLVER 1.8.2 o e
8.1.4.1.1 Fixed e

iii

8.2.1

8.2.2

Release Highlights for ROCm 5.7, 85
8.2.1.1 AMD Instinct™ MI50 End of Support Notice. 85
8.2.1.2 Feature Updates e e e e 85

8.2.1.2.1 Non-hostcall HIP Printf 85
8.2.1.2.2 Beta Release of LLVM Address Sanitizer (ASAN) with the GPU . . 86
8.2.1.3 Fixed Defects 86
8.2.1.4 HIP 5.7.0 o e 86
8.2.1.4.1 Optimizations 86
8.2.1.42 Added 86
8.2.1.4.3 Changed e 87
8.2.1.44 Fixed e 87
8.2.1.45 Known Issues. L 87
8.2.1.4.6 Upcoming changes for HIP in ROCm 6.0 release 87

Library Changes in ROCM 5.7.0 it 88

8.2.2.1 hipBLAS 1.1.0 e 88
8.2.2.1.1 Changed e 88
8.2.2.1.2 Dependencieso 88

8.2.2.2 hipCUB 2.13.1 e e e e 88
8.2.22.1 Changed e 89
8.2.22.2 Known Issues. L 89

8.2.2.3 hipFFT 1.0.12 e 89
8.2.23.1 Added 89
8.2.2.3.2 Changed e 89

8.2.2.4 hipSOLVER 1.8.1 e 89
8.2.24.1 Changed e 89

8.2.2.5 hipSPARSE 2.3.8 90
8.2.2.5.1 Improved e 90

8.2.2.6 MIOpen 2.19.0 L e 90
8.2.2.6.1 Added. 90
8.2.2.6.2 Changed 90
8.2.2.6.3 Fixed e 90

8.2.27 RCCL 2.17.1-1 o o e e 90
8.2.2.7.1 Changed e 90
8.2.2.7.2 Added e 91
8.2.27.3 Fixed e 91

8.2.2.8 1ocALUTION 2.1.11 o o s e e e e 91
8.2.281 Added. 91
8.2.2.82 Improved e 91

8.2.2.9 1ocBLAS 3.1.0 91
8.2.29.1 Added e 91
8.2.2.9.2 Fixed e 91
8.2.2.9.3 Changed e 92
8.2.2.9.4 Deprecated L e 92
8.2.2.9.5 Dependencies Lo 92

8.2.2.10 rocFFT 1.0.24 e e e 92
8.2.2.10.1 Optimizations 92
8.2.2.10.2 Added e 92
8.2.2.10.3 Changed e 92

8.2.2.11 rocm-cmake 0.10.0 Lo 93
8.2.2.11.1 Added e 93

8.2.2.12 rocPRIM 2.13.1 e e 93
8.2.2.12.1 Changed e 93
8.2.2.12.2 Fixed e 93

8.2.2.13 1ocRAND 2.10.17 o o e 93

iv

8.3

8.4

8.5

8.2.2.13.1 Added 93

8.2.2.13.2 Changed e 94

8.2.2.14 1ocSOLVER 3.23.0 e e e 94
8.2.214.1 Added 94

8.2.2.14.2 Fixed e 94

8.2.2.14.3 Changed e 94

8.2.2.15 1ocSPARSE 2.5.4 e 94
8.2.2.15.1 Added e 94

8.2.2.15.2 TImproved 95

8.2.2.15.3 Known Issues. L oo 95

8.2.2.16 rocThrust 2.18.0 L e 95
8.2.2.16.1 Fixed e 95

8.2.2.16.2 Changed e 95

8.2.2.17 tocWMMA 1.2.0 e 95
8.2.2.17.1 Changed e 95

8.2.2.18 Tensile 4.38.0 95
8.2.2.18.1 Added e 96

8.2.2.18.2 Optimizations 96

8.2.2.18.3 Changed e 96

8.2.2.18.4 Fixed e 96

ROCm 5.6.1 . . . o o o e e 96
8.3.1 What’s New in This Release 96
HIP 5.6.1 (for ROCm 5.6.1) o o e e e e e 97
8.4.1 Fixed Defects e 97
8.4.2 Library Changes in ROCM 5.6.1 97
8.4.2.1 hipSPARSE 2.3.7 97
8.4.21.1 Bugfix. e 97

ROCmM 5.6.0 . . . o o e 98
8.5.1 Release Highlights 98
8.5.2 OS and GPU Support Changes 98
8.5.3 AMDSMI CLI 23.0.0.4 e 98
8.5.3.1 Added L 98
8.5.3.2 Knownlssues. L 99

8.5.4 Kernel Modules (DKMS) o i 99
8.5.4.1 Fixes e e e e e e 99

8.5.5 HIP 5.6 (For ROCm 5.6) ottt e 99
8.5.5.1 Optimizations 99
8.5.5.2 Added 99
8.5.5.3 Changed e 99
8.5.5.4 Fixed e e 100
85.5.50 Known Issues. e 100
8.5.5.6 Upcoming changes in future release 100

8.5.6 ROCgdb-13 (For ROCm 5.6.0) 101
8.5.6.1 Optimized e e e e 101

8.5.7 ROCprofiler (For ROCm 5.6.0)o ittt e 101
8.5.7.1 Optimized e 102
8.5.7.2 Added 102
8.5.7.3 Fixed e 102

8.5.8 Library Changes in ROCM 5.6.0 102
8.5.8.1 hipBLAS 1.0.0 e e e e 103
8.5.8.1.1 Changed e 103

8.5.8.1.2 Removed e 103

8.5.8.1.3 Deprecated 103

8.5.8.2 hipCUB 2.13.1 e 103

85.8.2.1 Added 103

8.5.8.22 Changed e 103
8.5.8.23 KnownlIssues. 103
8.5.8.3 hipFFT 1.0.12 o 104
85.83.1 Added. 104
8.5.8.3.2 Changed e 104
8.5.8.4 hipSOLVER 1.8.0 e e e e e 104
8.5.84.1 Added e 104
8.5.8.5 hipSPARSE 2.3.6 104
85.85.1 Added. 104
8.5.85.2 Changed e 104
8.5.8.6 MIOpen 2.19.0 e e e e e 104
8.5.8.6.1 Added e 105
8.5.8.6.2 Changed 105
8.5.8.6.3 Fixed e 105
8.5.8.7 recl 2.15.5 . L Lo e 105
8.5.8.7.1 Changed e 105
8.5.87.2 Added. 105
8.5.8.7.3 Fixed e e 105
8.5.8.74 Removed e 106
8.5.8.8° 1ocALUTION 2.1.9 e 106
8.5.8.8.1 Improved 106
8.5.8.9 1ocBLAS 3.0.0 106
8.5.8.9.1 Optimizations 106
8.5.89.2 Added. 106
8.5.8.9.3 Deprecated L 106
8.5.8.9.4 Removed e 107
8.5.8.9.5 Dependencies e 107
8.5.8.9.6 Fixed 107
8.5.8.9.7 Changed e 107
8.5.8.10 1ocFFT 1.0.23 o 107
8.5.810.1 Added e 107
8.5.8.10.2 Changed e 107
8.5.8.10.3 Fixed e 108
8.5.8.11 rocm-cmake 0.9.0 e 108
85.811.1 Added 108
8.5.8.12 1ocPRIM 2.13.0 e 108
8.5.812.1 Added e 108
8.5.8.12.2 Changed e 108
8.5.8.12.3 Known Issues. e 108
8.5.8.13 1ocRAND 2.10.17 e 109
8.5.813.1 Added. e 109
8.5.8.13.2 Changed e 109
8.5.8.14 1ocSOLVER 3.22.0 e 109
8.5.8.14.1 Added. e 109
8.5.8.14.2 Optimized 110
8.5.8.14.3 Fixed e 110
8.5.8.15 1ocSPARSE 2.5.2 110
8.5.8.15.1 Improved e e 110
8.5.8.16 rocThrust 2.18.0 e e 110
8.5.8.16.1 Fixed e e 110
8.5.8.16.2 Changed e 110
8.5.8.17 tocWMMA 1.1.0 o e 110
85.817.1 Added e 110

vi

8.5.8.17.2 Changed e 111

8.5.8.18 Tensile 4.37.0 e e e e 111
8.5.818.1 Added e 111

8.5.8.18.2 Optimizations 111

8.5.8.18.3 Changed 112

8.5.8.18.4 Fixed e 112

8.6 ROCIM 5.5.1 o e e 113
8.6.1 What’s New in This Release 113
8.6.1.1 HIP SDK for Windows 113
8.6.1.2 HIP API Change i e 113
8.6.1.2.1 hipDeviceSetCacheConfig, 113

8.6.2 Library Changes in ROCM 5.5.1 113
8.7 ROCmM 5.5.0 o e e e e 114
8.7.1 What’s New in This Release, 114
8.7.1.1 HIP Enhancements 114
8.7.1.1.1 Enhanced Stack Size Limit 114

8.7.1.1.2 hipcc Changes e 114

8.7.1.1.3 Future Changes 114

8.7.1.1.4 New HIP APIs in This Release 115

8.7.1.1.4.1 Memory Management HIP APIs 115

8.7.1.1.4.2 Module Management HIP APIs. 115

8.7.1.1.4.3 HIP Graph Management APIs 116

8.7.1.1.5. OpenMP Enhancements 116

8.7.2 Deprecations and Warnings oL Lo 117
8.7.2.1 HIP Deprecation« . . . e e 117
8.7.2.1.1 Linux Filesystem Hierarchy Standard for ROCm 117

8.7.2.1.2 New Filesystem Hierarchy 117

8.7.2.1.3 Backward Compatibility with Older Filesystems 118

8.7.2.1.4 Wrapper header files L. 118

8.7.2.1.5 Library files 118

8.7.2.1.6 CMake Config files. oo 118

8.7.2.2 ROCm Support For Code Object V3 Deprecated 119
8.7.2.3 Comgr V3.0 Changes i it 119
8.7.23.1 APIChanges« . . i i i i 119

8.7.2.3.2 Actions and Data Types 119

8.7.2.4 Deprecated Environment Variables L. 119

8.7.3 Known Issues In This Release 120
8.7.3.1 DISTRIBUTED/TEST_ DISTRIBUTED_ SPAWN Fails 120
8.7.3.2 Failures In HIP Directed Tests, 120

8.7.4 Library Changes in ROCM 5.5.0 120
8.7.4.1 hipBLAS 0.54.0 e 121
8.7.41.1 Added e 121

8.7.41.2 Fixed e 121

8.7.4.1.3 Changed e 121

8.7.4.2 hipCUB 2.13.1 e e e e 121
8.7.421 Added 121

8.7.422 Changed 122

8.7.423 Fixed e 122

8.74.24 Known Issues. e 122

8.7.4.3 hipFFT 1.0.11 e e e e 122
8.7.4.3.1 Fixed e 122

8.7.4.4 hipSOLVER 1.7.0 e 122
8.7.441 Added e 122

8.7.4.5 hipSPARSE 2.3.5 123

vii

8.7.4.5.1 Improved e e 123

8.7.4.6 MIOpen 2.19.0 L e 123
8.7.4.6.1 Added 123
8.7.4.6.2 Changed e 123
8.74.6.3 Fixed e 123

8.7.4.7 1ecl 21550« L o L 123
8.7.4.71 Changed e 123
8.7.4.7.2 Added 124
8.74.7.3 Fixed e 124
8.7.4.74 Removed e 124

8.7.4.8 1ocALUTION 2.1.8 s 124
87481 Added. e 124
8.7.4.8.2 TImproved L 124
8.7.4.83 Changed e 124

8.7.4.9 1ocBLAS 2.47.0 e 125
8.7.49.1 Added. e 125
8.7.4.9.2 Optimizations e 125
8.74.93 Fixed 125
8.7.4.94 Changed e 126
8.7.4.95 Removed e 126

8.7.4.10 1ocFFT 1.0.22 o 126
8.7.4.10.1 Optimizations i 126
8.7.4.10.2 Added 126
8.7.4.10.3 Changed e 126
8.7.4.10.4 Fixed o 126

8.7.4.11 rocm-cmake 0.8.1 L 127
8.7.4.11.1 Fixed o e 127
8.7.4.11.2 Changed e 127

8.7.4.12 1ocPRIM 2.13.0 e 127
8.7.4.12.1 Added e 127
8.7.4.12.2 Changed e 127
8.7.4.12.3 Known Issues. e 127
8.7.4.124 Fixedo 127

8.7.4.13 1ocRAND 2.10.17 e 127
8.7.4.13.1 Added e 128
8.7.4.13.2 Changed e 128
8.7.4.13.3 Fixed oL 128

8.7.4.14 1ocSOLVER 3.21.0 o . . o e 128
8.7.4.14.1 Added e 128
8.7.4.14.2 Optimized 129
8.7.4.14.3 Changed e 129
8.7.4.144 Fixed o e 129

8.7.4.15 1ocSPARSE 2.5.1 e 129
8.7.4.15.1 Added e 129
8.7.4.15.2 TImproved L e 129
8.7.4.15.3 Known Issues. L L 130

8.7.4.16 tocWMMA 1.0 e 130
8.7.4.16.1 Added e 130
8.7.4.16.2 Changed e 130

8.7.4.17 Tensile 4.36.0 e e e 130
8.7.4.17.1 Added e 130
8.7.4.17.2 Optimizations e 131
8.7.4.17.3 Changed e 131
8.74.174 Fixed e 131

viii

8.8

8.9

8.10

8.11

ROCm 5.4.3 .« . . o o e 132

8.8.1 Deprecations and Warnings L oo 132

8.8.1.1 HIP Perl Scripts Deprecation 132

8.8.1.1.1 Linux Filesystem Hierarchy Standard for ROCm 132

8.8.1.1.2 New Filesystem Hierarchy 132

8.8.1.1.3 Backward Compatibility with Older Filesystems 133

8.8.1.1.4 Wrapper header files 133

8.8.1.1.5 Library files 134

8.8.1.1.6 CMake Configfiles. 134

8.8.2 Fixed Defects o e 134

8.8.2.1 Compiler Improvements L L 134

8.8.3 Known Issues e 134

8.8.3.1 Compiler Option Error at Runtime 134

8.8.4 Library Changes in ROCM 5.4.3 135

8.8.4.1 1ocFFT 1.0.21 e 135

8.8.4.1.1 Fixed e 135

ROCmM 5.4.2 . . . o o 135

8.9.1 Deprecations and Warnings L Lo oo 135

8.9.1.1 HIP Perl Scripts Deprecation 135

8.9.1.2 hipcc Options Deprecation L. 136

8.9.2 Known Issues e e 136

8.9.3 Library Changes in ROCM 5.4.2 136

ROCmM 5.4.1 . L o oo e 137

8.10.1 What’s New in This Release 137

8.10.1.1 HIP Enhancements 137

8.10.1.1.1 New HIP API - hipLaunchHostFunc 137

8.10.2 Deprecations and Warnings L L Lo 137

8.10.2.1 HIP Perl Scripts Deprecation 137

8.10.3 ITFWI Fixes o o e e e e e e e 137

8.10.3.1 AMD Instinct™ MI200 SRIOV Virtualization Support 138

8.10.4 Library Changes in ROCM 5.4.1 138

8.10.4.1 1ocFFT 1.0.20 o e 138

8.10.4.1.1 Fixed o e 139

ROCmM 5.4.0 o e e e e e 139

8.11.1 What’s New in This Release 139

8.11.1.1 HIP Enhancements 139

8.11.1.1.1 Support for Wall Clock64 139

8.11.1.1.2 New Registry Added for GPU_MAX HW_QUEUES. 139

8.11.1.2 New HIP APIsin This Release 140

8.11.1.2.1 Error Handling 140

8.11.1.2.2 HIP Tests Source Separation 140

8.11.2 OpenMP Enhancements 140

8.11.3 Deprecations and Warnings L o o 140

8.11.3.1 HIP Perl Scripts Deprecation 140

8.11.3.1.1 Linux Filesystem Hierarchy Standard for ROCm 141

8.11.3.1.2 New Filesystem Hierarchy 141

8.11.3.1.3 Backward Compatibility with Older Filesystems 142

8.11.3.1.4 Wrapper header files L. 142

8.11.3.1.5 Library files e 142

8.11.3.1.6 CMake Configfiles., 142

8.11.4 Fixed Defects e 143
8.11.4.1 Memory Allocated Using hipHostMalloc() with Flags Did Not Exhibit Fine-

Grain Behavior oL L e 143

8.11.4.1.1 Issue o o o e 143

ix

811.4.1.2 Fix o e 143

8.11.4.2 SoftHang with hipStreamWithCUMask test on AMD Instinct™ 143
8.11.4.2.1 Issue . . . o . o i e e 143
8.11.4.2.2 Fix o o e 143

8.11.4.3 ROCm Tools GPUIDs e 143

8.11.5 Library Changes in ROCM 5.4.0 144

8.11.5.1 hipBLAS 0.53.0 e 144
8.11.5.1.1 Added e 144

8.11.5.2 hipCUB 2.13.0 o e 144
811.5.2.1 Added 144
8.11.5.2.2 Changed e 145

8.11.5.3 hipFFT 1.0.10 o 145
8.11.5.3.1 Added e 145
8.11.5.3.2 Changed e 145

8.11.5.4 hipSOLVER 1.6.0 145
811.5.4.1 Added e 145

8.11.5.5 hipSPARSE 2.3.3 e 145
8.11.5.5.1 Added e 146
8.11.5.5.2 Changed e 146

8.11.5.6 recl 2.13.4 L Lo 146
8.11.5.6.1 Changed e 146
8.11.5.6.2 Fixed e 146

8.11.5.7 rocALUTION 2.1.3 e e 146
8.11.5.7.1 Added 146
8.11.5.7.2 TImproved e 146
8.11.5.7.3 Changed e 147

8.11.5.8 1ocBLAS 2.46.0 e 147
811.5.8.1 Added e 147
8.11.5.8.2 Optimized 147
8.11.5.8.3 Changed e 147
8.11.5.84 Fixed o 148

8.11.5.9 1ocFFT 1.0.19 o e 148
8.11.5.9.1 Optimizations 148
8.11.5.9.2 Added e 148
8.11.5.9.3 Changed e 148

8.11.5.10 rocPRIM 2.12.0 o 148
8.11.5.10.1 Changed e 148
8.11.5.10.2 Removed L e 149
8.11.5.10.3 Fixed o e e 149

8.11.5.11 rocRAND 2.10.16 o o e e e e 149
811.5.11.1 Added L 149
8.11.5.11.2 Changed e 149
8.11.5.11.3 Fixed o e 149

8.11.5.1210cSOLVER 3.20.0 o 150
8.11.5.12.1 Added e 150
8.11.5.12.2 Changed e 150

8.11.5.1310cSPARSE 2.4.0 e 150
811.5.13.1 Added L 150
8.11.5.13.2 Improved e 150

8.11.5.14 rocThrust 2.17.0 o o e e e 151
8.11.5.14.1 Added e 151

8.11.5.15 tocWMMA 0.9 e 151
811.5.15.1 Added L 151

8.11.5.15.2 Changed e 151

8.12

8.13

8.14

8.11.5.16 Tensile 4.35.0 L 151

8.11.5.16.1 Added e 151

8.11.5.16.2 Optimizations 152

8.11.5.16.3 Changed 152

8.11.5.16.4 Fixed o 152

ROCmM 5.3.3 . . . 152
8.12.1 Fixed Defects e 152
8.12.1.1 Issue with rocTHRUST and rocPRIM Libraries 152

8.12.2 Library Changes in ROCM 5.3.3 153
ROCmM 5.3.2 . . . 153
8.13.1 Fixed Defects o o e 153
8.13.1.1 Peer-to-Peer DMA Mapping Errors with SLES and RHEL 153
8.13.1.2 RCCL Tuning Table o 153
8.13.1.3 SGEMM (F32 GEMM) Routines in rocBLAS 154
8.13.2 Known Issues e e 154
8.13.2.1 AMD Instinct™ MI200 SRIOV Virtualization Issue 154
8.13.2.2 AMD Instinct™ MI200 Firmware Updates 154
8.13.2.3 Known Issue with rocThrust and rocPRIM Libraries 154

8.13.3 Library Changes in ROCM 5.3.2 155
ROCmM 5.3.0 o o e 155
8.14.1 Deprecations and Warnings L oo 155
8.14.1.1 HIP Perl Scripts Deprecation 155
8.14.1.2 Linux Filesystem Hierarchy Standard for ROCm 155
8.14.1.2.1 New Filesystem Hierarchy 156

8.14.1.2.2 Backward Compatibility with Older Filesystems 156

8.14.1.2.3 Wrapper header files oL 157

8.14.1.2.4 Library files 157

8.14.1.2.5 CMake Configfiles. 157

8.14.2 Fixed Defects e 157
8.14.2.1 Kernel produces incorrect results with ROCm 5.2 158

8.14.3 Known Issues o . L e e 158
8.14.3.1 Issue with OpenMP-Extras Package Upgrade 158
8.14.3.2 AMD Instinct™ MI200 SRIOV Virtualization Issue 158
8.14.3.3 System Crash when IMMOU is Enabled 158

8.14.4 Library Changes in ROCM 5.3.0 159
8.14.4.1 hipBLAS 0.52.0 e 159
814.4.1.1 Added e 159

8.14.4.1.2 Fixed e 159

8.14.4.2 hipCUB 2.12.0 o 159
8.14.4.2.1 Added e 160

8.14.4.2.2 Changed e 160

8.14.4.3 hipFFT 1.0.9 e 160
8.14.4.3.1 Changed e 160

8.14.4.4 hipSOLVER 1.5.0 o . . 160
8.14.44.1 Added e 161

8.14.4.4.2 Changed e 161

8.14.44.3 Fixed e 162

8.14.4.5 hipSPARSE 2.3.1 162
8.14.45.1 Added e 162

8.14.4.6 rocALUTION 2.1.0 o e e e e e e e e e 162
8.14.4.6.1 Added e 162

8.14.4.6.2 TImproved e 162

8.14.4.7 1ocBLAS 2.45.0 162
814.4.7.1 Added e 162

xi

8.15

8.16

8.17

8.14.4.7.2 Optimizations e 163

8.14.4.7.3 Changed e 163

8.14.4.7.4 Fixed e 163

8.14.4.7.5 Deprecated e 163

8.14.4.76 Removed e 164

8.14.4.8 1ocFFT 1.0.18 e 164
8.14.4.8.1 Changed e 164

8.14.4.8.2 Optimizations 164

8.14.4.8.3 Fixed e 164

8.14.4.9 rocm-cmake 0.8.0 164
8.14.4.9.1 Fixed e 164

8.14.4.9.2 Changed e 165

8.14.4.10 rocPRIM 2.11.0 e e e 165
8.14.4.10.1 Added 165
8.14.4.11rocRAND 2.10.15 o e 165
8.14.4.11.1 Changed e 165
8.14.4.1210cSOLVER 3.19.0 o 165
8.14.4.12.1 Added e 166

8.14.4.12.2 Changed e 166

8.14.4.12.3 Removed 166

8.14.4.12.4 Fixed o e 166

8.14.4.13 rocThrust 2.16.0 e 167
8.14.4.13.1 Changed e 167
8.14.4.1410cWMMA 0.8 e 167
8.14.4.15 Tensile 4.34.0 e 167
814.4.15.1 Added L 167

8.14.4.15.2 Optimizations e 167

8.14.4.15.3 Changed e 168

8.14.4.15.4 Fixed e 168

ROCmM 5.2.3 . . . e 168
8.15.1 Changes in This Release o 168
8.15.1.1 Ubuntu 18.04 End of Life Announcement 168
8.15.1.2 HIP Runtime 168
8.15.1.2.1 Fixes o i e e e e e e e e 168

8.15.1.3 RCCL o o e 169
8.15.1.3.1 Added 169

8.15.1.3.2 Removed e 169

8.15.1.4 Development Tools L 169

8.15.2 Library Changes in ROCM 5.2.3 170
8.15.2.1 1l 2.12.10 . . o . L e e e e e e e e 170
8.15.2.1.1 Added e 170

8.15.2.1.2 Removed e 171

ROCmM 5.2.1 . . o o 171
8.16.1 Library Changes in ROCM 5.2.1 171
ROCmM 5.2.0 o e e e e e 171
8.17.1 What’s New in This Release 171
8.17.1.1 HIP Enhancements 171
8.17.1.1.1 HIP Installation Guide Updates 171

8.17.1.1.2 Support for device-side malloc on HIP-Clang 172

8.17.1.1.3 New HIP APIs in This Release 172

8.17.1.1.3.1 Device management HIP APIs 172

8.17.1.1.3.2 New HIP Runtime APIs in Memory Management 172

8.17.1.1.3.3 HIP Graph Management APIs 174

8.17.1.1.3.4 Support for Virtual Memory Management APIs 174

xii

8.17.1.1.4 Planned HIP Changes in Future Releases 175

8.17.1.2 OpenMP Enhancements in This Release 176
8.17.1.2.1 OMPT Target Support 176

8.17.2 Deprecations and Warnings oL oo 176
8.17.2.1 Linux Filesystem Hierarchy Standard for ROCm 176
8.17.2.1.1 New Filesystem Hierarchy 177
8.17.2.1.2 Backward Compatibility with Older Filesystems 177
8.17.2.1.3 Wrapper header files L. 178
8.17.2.1.4 Library files 178
8.17.2.1.5 CMake Config files 178
8.17.2.2 Planned deprecation of hip-rocclr and hip-base packages 178
8.17.3 Fixed Defects« . e 179
8.17.4 Known Issues o e e e e e 179
8.17.4.1 Compiler Error on gfx1030 When Compiling at -O0 179
8IT41.1 TIssue oo i i e 179
8.17.4.1.2 Workaround e 179
8.17.4.2 System Freeze Observed During CUDA Memtest Checkpoint 179
8.17.4.2.1 Issue o i e e 179
8.17.4.2.2 Workaround 179
8.17.4.3 HPC test fails with the “HSA__ STATUS_ ERROR_ MEMORY_ FAULT” error179
8.17.4.3.1 Issue o e 179
8.17.4.3.2 Workaround e 180
8.17.4.4 Kernel produces incorrect result o oo 180
817.4.4.1 Issue o e e e 180
8.17.4.4.2 Workaround 180
8.17.4.5 TIssue with Applications Triggering Oversubscription 180
8.17.5 Library Changes in ROCM 5.2.0 181
8.17.5.1 hipBLAS 0.51.0 e 181
8.17.5.1.1 Added e 181
8.17.5.1.2 Fixed o e 181
8.17.5.2 hipCUB 2.11.1 o 181
817.5.2.1 Added e 182
8.17.5.3 hipFFT 1.0.8 L 182
8.17.5.3.1 Added e 182
8.17.5.4 hipSOLVER 1.4.0 e 182
817.54.1 Added 182
8.17.5.4.2 Fixed e 182
8.17.5.5 hipSPARSE 2.2.0« . . 182
8.17.5.5.1 Added e 182
8.17.5.6 tocALUTION 2.0.3 e 183
8.17.5.6.1 Added 183
8.17.5.7 1ocBLAS 2.44.0 183
817.5.7.1 Added e 183
8.17.5.7.2 Optimizations e 183
8.17.5.7.3 Changed e 183
8.17.5.74 Fixed o e 184
8.17.5.75 Removed e 184
8.17.5.8 1ocFFT 1.0.17 o 184
817581 Added e 184
8.17.5.8.2 Changed e 184
8.17.5.8.3 Optimizations 184
8.17.5.84 Fixed oL e 185
8.17.5.9 1ocPRIM 2.10.14 185
8.17.5.9.1 Added. e 185

xiii

8.17.5.10 tocRAND 2.10.14 185

8.17.5.10.1 Added e 185
8.17.5.1110cSOLVER 3.18.0 o e 185
817.511.1 Added L 185
817.5.11.2 Fixed o o e 186
8.17.5.1210cSPARSE 2.2.0 186
8.17.5.12.1 Added 186
8.17.5.12.2 ITmproved 186
8.17.5.12.3 Changed 186
8.17.5.12.4 Known Issues o L e 186
8.17.5.13 rocThrust 2.15.0 L e 186
817.5.13.1 Added e 186
8.17.5.1410cWMMA 0.7 e e 187
817.5.14.1 Added L 187
8.17.5.14.2 Changed e 187
8.17.5.15 Tensile 4.33.0 o 187
817.5.15.1 Added e 188
8.17.5.15.2 Optimizations 188
8.17.5.15.3 Changed e 188
8.17.5.15.4 Fixed o e 188
818 ROCMI 5.1.3 o e 188
8.18.1 Library Changes in ROCM 5.1.3 e 188
8.19 ROCI 5.1.1 o e e 189
8.19.1 Library Changes in ROCM 5.1.1 it 189
8.20 ROCMIM 5.1.0 o o e 189
8.20.1 What’s New in This Release 189
8.20.1.1 HIP Enhancements 189
8.20.1.1.1 HIP Installation Guide Updates 189
8.20.1.1.2 Support for HIP Graph 190
8.20.1.1.3 Planned Changes for HIP in Future Releases 190

8.20.1.1.3.1 Separation of hiprtc (libhiprtc) library from hip runtime
(amdhip64) 190
8.20.1.1.3.2 hipDeviceProp_t Structure Enhancements 190
8.20.1.2 ROCDebugger Enhancements 190
8.20.1.2.1 Multi-language Source Level Debugger 190
8.20.1.2.2 Machine Interface Lanes Support 190
8.20.1.2.3 Enhanced - clone-inferior Command 191
8.20.1.3 MIOpen Support for RDNA GPUs 191
8.20.1.4 Checkpoint Restore Support With CRIU 191
8.20.2 Fixed Defects 192
8.20.2.1 Driver Fails To Load after Installation 192
8.20.2.2 ROCDebugger Fixed Defects oL 192
8.20.2.2.1 Breakpoints in GPU kernel code Before Kernel Is Loaded 192
8.20.2.2.2 Registers Invalidated After Write. 192
8.20.2.2.3 Scheduler-locking and GPU Wavefronts 192
8.20.2.2.4 ROCDebugger Fails Before Completion of Kernel Execution 192
8.20.3 Known Issues L e e e e 193

8.20.3.1 Random Memory Access Fault Errors Observed While Running Math Li-
braries Unit Tests o 193
8.20.3.2 CU Masking Causes Application to Freeze 193
8.20.3.3 Failed Checkpoint in Docker Containers 193
8.20.3.4 Issue with Restoring Workloads Using Cooperative Groups Feature 193
8.20.3.5 Radeon Pro V620 and W6800 Workstation GPUs 193
8.20.3.5.1 No Support for ROCDebugger on SRIOV 193

Xiv

8.20.3.6 Random Error Messages in ROCm SMI for SR-IOV 194

8.20.4 Library Changes in ROCM 5.1.0 194
8.20.4.1 hipBLAS 0.50.0 e 194
8.20.4.1.1 Added 194
8.20.4.1.2 Fixed oL 195
8.20.4.1.3 Changed e 195
8.20.4.2 hipCUB 2.11.0 e 195
8.20.4.2.1 Added 195
8.20.4.2.2 Changed e 195
8.20.4.3 hipFFT 1.0.7 o . o o 195
8.20.4.3.1 Changed e 195
8.20.4.4 hipSOLVER 1.3.0 e 196
8.20.4.4.1 Added e 196
8.20.4.4.2 Changed e 197
8.20.4.4.3 Fixed e 197
8.20.4.5 hipSPARSE 2.1.0 197
8.20.4.5.1 Added 197
8.20.4.5.2 Changed e 197
8.20.4.5.3 TImproved 197
8.20.4.5.4 Known Issues. L o 197
8.20.4.6 rccl 2.11.4 . L oL L 197
8.20.4.6.1 Added 198
8.20.4.6.2 Known Issues. L 198
8.20.4.7 tocALUTION 2.0.2 e 198
8.20.4.7.1 Added 198
8.20.4.8 1ocBLAS 2.43.0 198
8.20.4.8.1 Added e 198
8.20.4.8.2 Optimizations e 198
8.20.4.8.3 Changed e 199
8.20.4.84 Fixed 199
8.20.4.9 1ocFFT 1.0.16 o . 199
8.20.4.9.1 Changed e 199
8.20.4.9.2 Optimizations 199
8.20.4.9.3 Fixed e 200
8.20.4.94 Removed e 200
8.20.4.10 rocPRIM 2.10.13 o 200
8.20.4.10.1 Fixed oL e 200
8.20.4.10.2 Added 200
8.20.4.10.3 Changed e 200
8.20.4.10.4 Known Issues L 200
8.20.4.11 rocRAND 2.10.13 e 200
8.20.4.11.1 Added L 200
8.20.4.11.2 Changed e 201
8.20.4.11.3 Fixed oL e 201
8.20.4.11.4 Known Issues o . L 201
8.20.4.121ocSOLVER 3.17.0 o 201
8.20.4.12.1 Optimized e 201
8.20.4.12.2 Fixed oL e 201
8.20.4.13 rocSPARSE 2.1.0 e 202
8.20.4.13.1 Added 202
8.20.4.13.2 Tmproved 202
8.20.4.13.3 Known Issues e 202
8.20.4.14 rocThrust 2.14.0 L 202
8.20.4.14.1 Added 202

XV

8.21

8.22

8.23

8.20.4.14.2 Known Issues oo 202

8.20.4.15 Tensile 4.32.0 L e e e 202
8.20.4.15.1 Added 203

8.20.4.15.2 Optimized e 203

8.20.4.15.3 Changed e 203

8.20.4.15.4 Removed e 203

ROCmM 5.0.2 . . . o o e e 203
8.21.1 Fixed Defects o e e e e e e e e e 203
8.21.1.1 TIssue with hostcall Facility in HIP Runtime 203

8.21.2 Library Changes in ROCM 5.0.2 204
ROCmM 5.0.1 . . o o e 204
8.22.1 Deprecations and Warnings L. 0o e 204
8.22.1.1 Refactor of HIPCC/HIPCONFIG 204

8.22.2 Library Changes in ROCM 5.0.1 205
ROCmM 5.0.0 o o 205
8.23.1 What’s New in This Release 205
8.23.1.1 HIP Enhancements 205
8.23.1.1.1 HIP Installation Guide Updates 205

8.23.1.1.2 Managed Memory Allocation 205

8.23.1.2 New Environment Variable 206

8.23.2 Breaking Changes e 207
8.23.2.1 Runtime Breaking Change 207

8.23.3 Known Issues L e e e 211
8.23.3.1 Incorrect dGPU Behavior When Using AMDVBFlash Tool 211
8.23.3.2 Issue with START Timestamp in ROCProfiler 212
8.23.3.2.1 Issue 212

8.23.3.2.2 Current behavior oL o 212

8.23.3.2.3 Expected behavior L oo 212

8.23.3.2.4 Recommended Workaround, 212

8.23.3.3 Radeon Pro V620 and W6800 Workstation GPUs 213
8.23.3.3.1 No Support for SMI and ROCDebugger on SRIOV 213

8.23.4 Deprecations and Warnings L L L oo 213
8.23.4.1 ROCm Libraries Changes — Deprecations and Deprecation Removal 213
8.23.4.2 HIP API Deprecations and Warnings 214
8.23.4.2.1 Warning - Arithmetic Operators of HIP Complex and Vector Types 214

8.23.4.3 Warning - Compiler-Generated Code Object Version 4 Deprecation 214
8.23.4.4 Warning - MIOpenTensile Deprecation 214
8.23.5 Library Changes in ROCM 5.0.0 214
8.23.5.1 hipBLAS 0.49.0 e 215
8.23.5.1.1 Added e 215

8.23.5.1.2 Fixed e 215

8.23.5.2 hipCUB 2.10.13 o e 215
8.23.5.2.1 Fixed e 215

8.23.5.2.2 Added e 215

8.23.5.2.3 Changed 216

8.23.5.3 hipFFT 1.0.4 e 216
8.23.5.3.1 Fixed e 216

8.23.5.3.2 Added 216

8.23.5.4 hipSOLVER 1.2.0 216
8.23.5.4.1 Added e 216

8.23.5.4.2 Fixed e 216

8.23.5.5 hipSPARSE 2.0.0 e 216
8.23.5.5.1 Added 217

8.23.5.6 rccl 2.10.3 . . . o L L e 217

Xvi

8.23.5.6.1 Added
8.23.5.6.2 KnownlIssues. e

8.23.5.7 rocALUTION 2.0.1 o o e e s e e e

8.23.5.7.1 Changed e
8.23.5.7.2 Improved e

8.23.5.8 1ocBLAS 2.42.0

8.23.5.8.1 Added. e
8.23.5.8.2 Optimizations
8.23.5.8.3 Changed
8.23.5.84 Fixed e

8.23.5.9 1ocFFT 1.0.13 e

8.23.5.9.1 Optimizations e
8.23.5.9.2 Added
8.23.5.9.3 Fixed e

8.23.5.10 rocPRIM 2.10.12

8.23.5.10.1 Fixed e e
8.23.5.10.2 Added
8.23.5.10.3 Changed e
8.23.5.10.4 Known Issues

8.23.5.11tocRAND 2.10.12 e

8.23.5.11.1 Changed e

8.23.5.1210cSOLVER 3.16.0

8.23.5.12.1 Added
8.23.5.12.2 Optimized
8.23.5.12.3 Changed
8.23.5.12.4 Fixed oL

8.23.5.1310cSPARSE 2.0.0

8.23.5.13.1 Added
8.23.5.13.2 Changed e
8.23.5.13.3 Improved

8.23.5.14rocThrust 2.13.0

8.23.5.14.1 Added L
8.23.5.14.2 Changed e

8.23.5.15 Tensile 4.31.0 e e

8.23.5.15.1 Added L
8.23.5.15.2 Optimized L
8.23.5.15.3 Changed L e
8.23.5.15.4 Removed
8.23.5.15.5 Fixed e

9 GPU Support and OS Compatibility (Linux)

10

9.1
9.2
9.3

9.4

Supported Linux Distributions
Virtualization Support
Linux Supported GPUs e

Support Status

CPU Support o e e e e

GPU and OS Support (Windows)
10.1 Supported SKUs 0 o e
10.2 Windows Supported GPUs L

10.2.1 Component SUpport e e e e
10.2.2 Support Status e

10.3 CPU Support o e e

220

xvii

11

12

13

14

15

16

17

18

19

20

21

ROCm Release History

Compatibility

12.1 User/Kernel-Space Support Matrix o o

12.2 Docker image support matrix oL L oL e

12.3 3rd Party Support Matrix
12.3.1 Deep Learning Lo
12.3.2 Communication libraries L L
12.3.3 Algorithm libraries L

Licensing Terms
13.1 Package Licensing e

All Reference Material
14.1 ROCm Software Groups o it vttt e e e

HIP
15.1 HIP Runtime e e e e e
15.2 Porting tools o e

Math Libraries

16.1 rocLIB vs. hipLIB o e
16.2 Linear Algebra Libraries e
16.3 Fast Fourier Transforms e e e
16.4 Random Numbers e e e e

C++ Primitive Libraries
Communication Libraries
AT Libraries

Computer Vision

OpenMP Support in ROCm
21.1 Introduction e
21.1.1 Imstallation oo L e
21.2 OpenMP: Usage o v it e e e e e e e
21.2.1 Using rocprof with OpenMP
21.2.2 Using Tracing Options o 0 e
21.2.3 Environment Variables oo
21.3 OpenMP: Features o . e e
21.3.1 Asynchronous Behavior in OpenMP Target Regions
21.3.2 Unified Shared Memory e
21.3.2.1 Prerequisites Lo e
21.3.2.2 Xnack Capability
21.3.2.3 Unified Shared Memory Pragma
21.3.3 OMPT Target Support o
21.3.4 Floating Point Atomic Operations
21.3.5 Address Sanitizer (ASan) Tool. oL
21.3.6 Clang Compiler Option for Kernel Optimization.
21.3.7 Specialized Kernels L e
21.3.7.1 No-Loop Kernel Generation
21.3.7.2 Big-Jump-Loop Kernel Generation
21.3.7.3 Xteam Optimized Reduction Kernel Generation

229

231
231
232
234
234
235
235

237
239

241
241

243
243
243

245
245
246
247
247

249

251

253

xviii

22 Compilers and Tools 267
22.1 See AlSO e e 267
22.2 Compiler Reference Guide 268

22.2.1 Introduction to Compiler Reference Guide 268
22.2.1.1 ROCm Compiler Interfaces 268
22.2.2 Compiler Options and Features 270
22.2.2.1 AMD GPU Compilation 270
22.2.2.2 AMD Optimizations for Zen Architectures 271
22.2.2.2.1 -famd-opt 271
22.2.2.2.2 -fstruct-layout=[1,2,3,4,5,6,7] 271
22.2.2.2.3 -fitodealls 272
22.2.2.2.4 -fitodcallsbyclone 272
22.2.2.2.5 -fremap-arrays oo e 273
22.2.2.2.6 -finline-aggressive L Lo o 273
22.2.2.2.7 -fnt-store (non-temporal store) Lo 273
22.2.2.2.8 -fnt-store=aggressiveo 273
22.2.2.2.9 Optimizations Through Driver -mllvim <options> 273
22.2.2.2.9.1 -enable-partial-unswitch 000 273
22.2.2.2.9.2 -aggressive-loop-unswitch oL 0oL 273
22.2.2.2.9.3 -enable-strided-vectorization L. 274
22.2.2.2.9.4 -enable-epilog-vectorization 274
22.2.2.2.9.5 -enable-redundant-movs Lo L 274
22.2.2.2.9.6 -merge-constant L 274
22.2.2.2.9.7 -function-specialize 275
22.2.2.2.9.8 -lv-function-specialization 275
22.2.2.2.9.9 -enable-vectorize-compares 275
22.2.2.2.9.10 -inline-recursion=[1,2,34] 275
22.2.2.2.9.11 -reduce-array-computations=[1,2,3] 275
22.2.2.2.9.12 -global-vectorize-slp={true,false} 276
22.2.2.2.9.13 -region-vectorize 276
22.2.2.2.9.14 -enable-x86-prefetching 276
22.2.2.2.9.15 -suppress-fmas oL Lo 276
22.2.2.2.9.16 -enable-icm-vrp Lo 276
22.2.2.2.9.17 -loop-splittingo oo 276
22.2.2.2.9.18 -enable-ipo-loop-split L. 276
22.2.2.2.9.19 -compute-interchange-order oL 277
22.2.2.2.9.20 -convert-pow-exp-to-int={true false} 277
22.2.2.2.9.21 -do-lock-reordering={none,normal,aggressive} 277
22.2.2.2.9.22 -fuse-tile-inner-loop L. 277
22.2.2.2.9.23 -Hz,1,0x1 [Fortran] 277

22.2.2.3 Inline ASM Statements 277
22.2.2.4 Miscellaneous OpenMP Compiler Features 278
22.2.2.4.1 Offload-arch Tool, 278
22.2.2.4.2 Command-Line Simplification Using offload-arch Flag 279
22.2.2.4.3 Target ID Support for OpenMP 279
22.2.2.4.4 Multi-image Fat Binary for OpenMP 280
22.2.2.4.5 Unified Shared Memory (USM) 281
22.2.2.5 Support Status of Other Clang Options 281

23 Management Tools 297

24 Validation Tools 299

25 All Explanation Material 301

Xix

26 ROCm Compilers Disambiguation

27

28

29

30

26.1

Compiler Terms e e e

Using CMake

27.1
27.2

27.3

Finding Dependencies L o e e e e
Using HIP in CMake o 0 e e e
27.2.1 Using the HIP single-source programming model
27.2.2 Consuming ROCm C/C++ Libraries« . o v v i
27.2.3 Consuming the HIP APTin C++4code
27.2.4 Compiling device code in C++ language mode
27.2.5 ROCm CMake Packages e
Using CMake Presets 0 e e
27.3.1 Using HIP with presets e

ROCm FHS Reorganization

28.1
28.2
28.3
28.4

28.5
28.6

Introduction e e e e e e e
Adopting the Linux foundation Filesystem Hierarchy Standard (FHS)
Changes From Earlier ROCm Versions oo
ROCm FHS Reorganization: Backward Compatibility
28.4.1 Wrapper Header Files 0 o e
28.4.2 Executable Files e e e e
28.4.3 Library Files e
28.4.4 CMake Config Files o oo e
Changes Required in Applications Using ROCm
Changes in Versioning Specifications

GPU Isolation Techniques

29.1

29.2
29.3

Environment Variables e e
29.1.1 ROCR_VISIBLE _DEVICES e e e e
29.1.2 GPU _DEVICE ORDINAL e e e e e e
29.1.3 HIP_ VISIBLE DEVICES. e e i
29.1.4 CUDA_VISIBLE DEVICES it
29.1.5 OMP_DEFAULT DEVICE i ie e
Docker . . . e e e e
GPU Passthrough to Virtual Machines

GPU Architectures

30.1
30.2
30.3
30.4

30.5

Architecture Guides e e e e e e
ISA Documentation e
White Papers. o L
AMD Instinct Hardware e e e
30.4.1 AMD CDNA 2 Micro-architecture
30.4.2 Node-level Architecture e e
MI200 Performance Counters and Metrics
30.5.1 MI200 Performance Counters List,
30.5.1.1 Graphics Register Bus Management (GRBM)
30.5.1.1.1 GRBM Counters v i v i ittt e e

30.5.1.2 Command Processor (CP)
30.5.1.2.1 Command Processor - Fetcher (CPF)

30.5.1.2.1.1 CPF Counters

30.5.1.2.2 Command Processor - Compute (CPC)

30.5.1.2.2.1 CPC Counters v i,

30.5.1.3 Shader Processor Input (SPI)
30.5.1.3.1 SPI Counters v i i v i it it e e e e e

30.5.1.4 Compute Unit

XX

31

32

33

34

35

36

37

38

39

40

30.5.1.4.1 Imstruction Mix e

30.5.1.4.2 MFMA Operation Counters

30.5.1.4.3 Level Counters

30.5.1.4.4 Wavefront Counters

30.5.1.4.5 Wavefront Cycle Counters

30.5.1.4.6 Local Data Share

30.5.1.4.7 Miscellaneous e

30.5.1.4.7.1 Local Data Share.

30.5.1.5 L1l and sLL1D Caches
30.5.1.5.1 Ll and sLL1ID Caches

30.5.1.6 Vector L1 Cache Subsystem
30.5.1.6.1 Texture Addressing Unit

30.5.1.6.1.1 Texture Addressing Unit Counters

30.5.1.6.2 Texture Data Unit

30.5.1.6.2.1 Texture Data Unit Counters

30.5.1.6.3 Vector L1D Cache e

30.5.1.6.4 Texture Cache Arbiter (TCA)

30.5.1.7 L2 Cache Access e
30.5.1.7.1 L2 Cache Access Counters

30.5.2 MI200 Derived Metrics List e
30.5.2.1 Derived Metrics on MI200 GPUs

30.5.3 Abbreviations e e e e e e
30.5.3.1 MI200 Abbreviations e

30.6 AMD Instinct™ MI100 Hardware
30.6.1 System Architecture
30.6.2 Micro-architecture L e e

Using the LLVM Address Sanitizer (ASAN) on the GPU

Compile for Address Sanitizer
32.1 About Compilation Time e

Use AMD Supplied Address Sanitizer Instrumented Libraries

Running Address Sanitizer Instrumented Applications
34.1 Preparing to Run an Instrumented Application L oL

Runtime Overhead
35.1 Higher Execution Time o e
35.2 Higher Memory Use 0 e e e

Runtime Reporting

Running with rocgdb

Using Address Sanitizer with a Short HIP Application (LINK NEEDED HERE)
Known Issues with Using GPU Sanitizer

How ROCm uses PCle Atomics

40.1 ROCm PCle Feature and Overview BAR Memory
40.1.1 BAR Memory Overview o v it e e e e e

40.2 Excepts form Overview of Changes to PCI Express 3.0
40.2.1 By Mike Jackson, Senior Staff Architect, MindShare, Inc.

339

341
341

343

345
345

347
347
347

349

351

353

355

357
357
358
359
359
359
360

xxi

41 All How-To Material 361

42 Tuning Guides 363
42.1 High Performance Computing o ot e 363
422 Workstation Lo e 364
42.3 MI200 High Performance Computing and Tuning Guide 364

42.3.1 System Settings L 364
42.3.1.1 System BIOS Settings L 365
42.3.1.1.1 NBIO Link Clock Frequency 366

42.3.1.1.2 Memory Configuration 366

42.3.1.2 Operating System Settings o 366
42.3.1.2.1 CPU Core State - “C States” 366

42.3.1.2.2 AMD-IOPM-UTIL o o e 367

42.3.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration 367

42.3.2 System Management e e 368
42.3.2.1 Hardware Verification with ROCm 368
42.3.2.2 Testing Inter-device Bandwidth 370

42.4 MI100 High Performance Computing and Tuning Guide 372
42.4.1 System Settings L e 372
42.4.1.1 System BIOS Settings« . 372
42.4.1.1.1 NBIO Link Clock Frequency 373

42.4.1.1.2 Memory Configuration 376

42.4.1.2 Operating System Settings 376
42.4.1.2.1 CPU Core State - “C States” 376

42.4.1.2.2 AMD-IOPM-UTILo o e e 377

42.4.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration 377

42.4.2 System Management L. L e e 378
42.4.2.1 Hardware Verification with ROCm 378
42.4.2.2 Testing Inter-device Bandwidth 381

42.5 RDNA2 Workstation Tuning Guide o0 383
42.5.1 System Settingso e 383
42.5.1.1 System BIOS Settings 383
42.5.1.2 Operating System Settings o 383
42.5.1.3 Guest OS installation L 384

43 Deep Learning Guide 387
43.1 Frameworks Installation oL Lo 388
43.2 Magma Installation for ROCmo o 388

43.2.1 MAGMA for ROCm e 388
43.2.1.1 Using MAGMA for PyTorch 388
43.2.1.2 Build MAGMA from Source 388

43.2.2 References L 389

43.3 PyTorch Installation for ROCm o 0 389

43.3.1 PyTorch e 389

43.3.1.1 Imstalling PyTorch 390
43.3.1.1.1 Option 1 (Recommended): Use Docker Image with PyTorch Pre-
Installed 0 o 390
43.3.1.1.2 Option 2: Install PyTorch Using Wheels Package 390
43.3.1.1.3 Option 3: Install PyTorch Using PyTorch ROCm Base Docker Image 391
43.3.1.1.4 Option 4: Install Using PyTorch Upstream Docker File 392
43.3.1.2 Test the PyTorch Installation 394
43.3.1.3 Run a Basic PyTorch Example 395
43.3.2 Using MIOpen kdb files with ROCm PyTorch wheels, 395
43.3.3 References 396

xxii

43.4 TensorFlow Installation for ROCm o 0 o
43.4.1 TensorFlow L e e
43.4.1.1 Installing TensorFlow
43.4.1.1.1 Option 1: Install TensorFlow Using Docker Image
43.4.1.1.2 Option 2: Install TensorFlow Using Wheels Package
43.4.1.2 Test the TensorFlow Installation
43.4.1.3 Run a Basic TensorFlow Example
43.4.2 References L e
44 GPU-Enabled MPI
44.1 Building UCX o . o e e e
44.2 Install UCX . . . L o e
44.3 Install Open MPIL o o o
44.4 ROCm-enabled OSU o e
44.5 Intra-node Run o L oL e
44.6 Collective Operations o i i e e
45 System Debugging Guide
45.1 ROCm Language and System Level Debug, Flags, and Environment Variables
45.2 ROCr Error Code 0 e e
45.3 Command to Dump Firmware Version and Get Linux Kernel Version
454 Debug Flags L o e e
45.5 ROCr Level Environment Variables for Debugo L.
45.6 Turn Off Page Retry on GFX9/Vega Devices o ...
45.7 HIP Environment Variables 3.x L oo s
45.7.1 OpenCL Debug Flags o . o
45.8 PCle-Debug o e
46 Machine Learning, Deep Learning, and Artificial Intelligence
46.1 Inception V3 with PyTorch o
46.1.1 Deep Learning Training L Lo
46.1.2 Training Phases e
46.1.3 Case Studies e
46.1.3.1 Inception v3 with PyTorch
46.1.3.1.1 Evaluating a Pre-Trained Model
46.1.3.1.2 Training Inception v3o oo
46.1.3.2 Custom Model with CIFAR-10 on PyTorch
46.1.3.3 Case Study: TensorFlow with Fashion MNIST
46.1.3.4 Case Study: TensorFlow with Text Classification
46.1.4 References L. e
46.2 Inference Optimization with MIGraphX
46.2.1 Inference
46.2.2 MIGraphX Introduction e
46.2.3 Installing MIGraphX o
46.2.3.1 Option 1: Installing Binaries
46.2.3.2 Option 2: Building from Source
46.2.3.3 Option 3: Use Docker
46.2.4 MIGraphX Example oL L
46.2.4.1 MIGraphX Python APT
46.2.5 MIGraphX C++ APL e
46.2.6 Tuning MIGraphX
46.2.6.1 YModel
46.2.6.1.1 YModel Example o o

47 About ROCm Documentation

47.1
47.2
47.3
47.4

TOCI-AOCS-COTE .« . v v v v e i e e e e e e e e e e e e e e e e e e
SPhinx e
Read the Docs o o e
Doxygen o e e e e e
47.4.1 Breathe L e
47.4.2 MyST . . o e
47.4.3 Sphinx External TOC e
47.4.4 Sphinx Book Theme
47.4.5 Sphinx Design

48 Contributing to ROCm Docs

48.1
48.2
48.3
48.4
48.5

48.6

Supported Formats
Filenames and folder structure Lo
Language and Style e
More . . L e e e e
Building Documentation L e
48.5.1 Pull Request documentation builds
48.5.2 Build documentation from the Command Line,
48.5.3 Build documentation using Visual Studio (VS) Code

48.5.3.1 Configuring VS Code«
How to provide feedback for ROCm documentation
48.6.1 Pull Request e
48.6.2 GitHub Discussions e e e e e e
48.6.3 GitHub Issue o . e
48.6.4 Email oL e

49 License

Index

XXiv

ROCm Documentation, Release 5.7.1

What is ROCm?

ROCm is an open-source stack, composed primarily of open-source software (OSS), designed for graphics
processing unit (GPU) computation. ROCm counsists of a collection of drivers, development tools, and APIs
that enable GPU programming from low-level kernel to end-user applications. more...

Deploy ROCm

e Deploy ROCm on Linux
e Deploy ROCm Docker containers
e Deploy ROCm using Radeon

Release Info

e Release Notes
e GPU and OS Support
e Known Issues
o Compatibility
e Licensing
APIs and Reference
e Compilers and Development Tools
o HIP
e OpenMP
e Math Libraries
e C++ Primitives Libraries
e Communication Libraries
e Al Libraries
e Computer Vision
e Management Tools
o Validation Tools
Understand ROCm
o Compiler Disambiguation
e Using CMake
e Linux Folder Structure Reorganization
e GPU Isolation Techniques
e GPU Architecture
How to Guides
e System Tuning for Various Architectures

¢ GPU Aware MPI

CONTENTS 1

https://rocm.docs.amd.com/projects/radeon/en/latest/index.html
https://github.com/RadeonOpenCompute/ROCm/labels/Verified%20Issue

ROCm Documentation, Release 5.7.1

e Setting up for Deep Learning with ROCm
— Magma Installation
— PyTorch Installation
— TensorFlow Installation
e System Level Debugging
Tutorials & Examples
e Examples
e« ML, DL, and AI
— Inception V3 with PyTorch
— Inference Optimization with MIGraphX

2 CONTENTS

https://github.com/amd/rocm-examples

CHAPTER

ONE

WHAT IS ROCM?

ROCm is an open-source stack, composed primarily of open-source software (OSS), designed for graphics
processing unit (GPU) computation. ROCm counsists of a collection of drivers, development tools, and APIs
that enable GPU programming from low-level kernel to end-user applications.

With ROCm, you can customize your GPU software to meet your specific needs. You can develop, collab-
orate, test, and deploy your applications in a free, open-source, integrated, and secure software ecosystem.
ROCm is particularly well-suited to GPU-accelerated high-performance computing (HPC), artificial intelli-
gence (AI), scientific computing, and computer aided design (CAD).

ROCm is powered by AMD’s Heterogeneous-computing Interface for Portability (HIP), an OSS C4++4+ GPU
programming environment and its corresponding runtime. HIP allows ROCm developers to create portable
applications on different platforms by deploying code on a range of platforms, from dedicated gaming GPUs
to exascale HPC clusters.

ROCm supports programming models, such as OpenMP and OpenCL, and includes all necessary OSS
compilers, debuggers, and libraries. ROCm is fully integrated into machine learning (ML) frameworks, such
as PyTorch and TensorFlow.

1.1 ROCm on Radeon

Starting with ROCm™ 5.7 on Linux®, researchers and developers working with Machine Learning (ML)
models and algorithms can tap into the parallel computing power of the AMD desktop GPUs based on the
RDNA™ 3 architecture.

A client solution built on powerful high-end AMD GPUs provides a local, private and often cost-effective
workflow to develop ROCm and train ML (PyTorch) for the users who previously relied solely on cloud-based
solutions.

For information about how to install ROCm on AMD desktop GPUs based on the RDNA™ 3 architecture,
see Use ROCm on Radeon. For more information about supported AMD Radeon™ desktop GPUs, see
Radeon Compatibility Matrices.

https://github.com/ROCm-Developer-Tools/HIP
https://rocm.docs.amd.com/projects/radeon/en/latest/index.html

ROCm Documentation, Release 5.7.1

1.2 ROCm on Windows

Starting with ROCm 5.5, the HIP SDK brings a subset of ROCm to developers on Windows. The collection
of features enabled on Windows is referred to as the HIP SDK. These features allow developers to use the
HIP runtime, HIP math libraries and HIP Primitive libraries. The following table shows the differences
between Windows and Linux releases.

Component Linux Windows

Driver Radeon Software for Linux AMD Software Pro Edition
Compiler hipce/amdclang++ hipce/clang++
Debugger rocgdb no debugger available
Profiler rocprof Radeon GPU Profiler
Porting Tools HIPIFY Coming Soon
Runtime HIP (Open Sourced) HIP (closed source)
Math Libraries Supported Supported

Primitives Libraries Supported Supported
Communication Libraries | Supported Not Available

AT Libraries MIOpen, MIGraphX Not Available

System Management rocm-smi-lib, RDC, rocminfo | amdsmi, hipInfo

AT Frameworks PyTorch, TensorFlow, etc. Not Available

CMake HIP Language Enabled Unsupported

Visual Studio Not applicable Plugin Available

HIP Ray Tracing Supported Supported

AMD is continuing to invest in Windows support and AMD plans to release enhanced features in subsequent
revisions.

Note: The 5.5 Windows Installer collectively groups the Math and Primitives libraries.

Note: GPU support on Windows and Linux may differ. You must refer to Windows and Linux GPU
support tables separately.

Note: HIP Ray Tracing is not distributed via ROCm in Linux.

1.2.1 ROCm release versioning

Linux OS releases set the canonical version numbers for ROCm. Windows will follow Linux version numbers
as Windows releases are based on Linux ROCm releases. However, not all Linux ROCm releases will have
a corresponding Windows release. The following table shows the ROCm releases on Windows and Linux.
Releases with both Windows and Linux are referred to as a joint release. Releases with only Linux support
are referred to as a skipped release from the Windows perspective.

Release version | Linux | Windows
5.5

5.6

4 Chapter 1. What is ROCm?

https://gpuopen.com/rgp/

ROCm Documentation, Release 5.7.1

ROCm Linux releases are versioned with following the Major.Minor.Patch version number system. Windows
releases will only be versioned with Major.Minor.

In general, Windows releases will trail Linux releases. Software developers that wish to support both Linux
and Windows using a single ROCm version should refrain from upgrading ROCm unless there is a joint
release.

1.2.2 Windows Documentation implications

The ROCm documentation website contains both Windows and Linux documentation. Just below each
article title, a convenient article information section states whether the page applies to Linux only, Windows
only or both OSes. To find the exact Windows documentation for a release of the HIP SDK, please view the
ROCm documentation with the same Major.Minor version number while ignoring the Patch version. The
Patch version only matters for Linux releases. For convenience, Windows documentation will continue to be
included in the overall ROCm documentation for the skipped Windows releases.

Windows release notes will contain only information pertinent to Windows. The software developer must
read all the previous ROCm release notes (including) skipped ROCm versions on Windows for information
on all the changes present in the Windows release.

1.2.3 Windows Builds from Source

Not all source code required to build Windows from source is available under a permissive open source license.
Build instructions on Windows is only provided for projects that can be built from source on Windows using
a toolchain that has closed source build prerequisites. The ROCm manifest file is not valid for Windows.
AMD does not release a manifest or tag our components in Windows. Users may use corresponding Linux
tags to build on Windows.

1.2. ROCm on Windows 5

ROCm Documentation, Release 5.7.1

6 Chapter 1. What is ROCm?

CHAPTER

TWO

2.1 Add Repositories

Select OS
Ubuntu

1. Download and convert the package signing key

QUICK START (LINUX)

Make the directory if it doesn't exist yet.
This location is recommended by the distribution maintainers.
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
Download the key, convert the signing-key to a full
keyring required by apt and store in the keyring directory
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | \
gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null

2. Add the repositories

Ubuntu 22.04

Important: Instructions for Select OS, Ubuntu 22.04

Kernel driver repository for jammy
sudo tee /etc/apt/sources.list.d/amdgpu.list <<'EOF"

deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.7.1/ubuntu jammy

—main

EOF

ROCm repository for jammy

sudo tee /etc/apt/sources.list.d/rocm.list <<'EOF"

deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/debian jammy main

EOF
Prefer packages from the rocm repository over system packages

echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-

—pin-600

ROCm Documentation, Release 5.7.1

Ubuntu 20.04

Important: Instructions for Select OS, Ubuntu 20.04

Kernel driver repository for focal

sudo tee /etc/apt/sources.list.d/amdgpu.list <<'EOF'

deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/5.7.1/ubuntu focal,
—main

EOF

ROCm repository for focal

sudo tee /etc/apt/sources.list.d/rocm.list <<'EOF'

deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg| https://repo.radeon.com/rocm/apt/debian focal main
EOF

Prefer packages from the rocm repository over system packages

echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-
—pin-600

3. Update the list of packages

sudo apt update

Red Hat Enterprise Linux
1. Add the repositories

RHEL 8.8

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.8

Add the amdgpu module repository for RHEL 8.8

sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7.1/rhel /8.8 /main /x86_ 64
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

Add the rocm repository for RHELS8

sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'

[rocm]

name=rocm
baseurl=https://repo.radeon.com/rocm/rhel8/latest /main
enabled=1

priority=>50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

8 Chapter 2. Quick Start (Linux)

ROCm Documentation, Release 5.7.1

RHEL 8.7

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.7

Add the amdgpu module repository for RHEL 8.7

sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpul]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7.1/rhel /8.7 /main /x86_ 64
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

Add the rocm repository for RHELS8

sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'

[rocm]

name=rocm
baseurl=https://repo.radeon.com/rocm/rhel8/latest /main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

RHEL 8.6

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.6

Add the amdgpu module repository for RHEL 8.6

sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7.1/rhel /8.6 /main /x86_ 64
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

Add the rocm repository for RHELS8

sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'

[rocm]

name=rocm
baseurl=https://repo.radeon.com/rocm/rhel8/latest /main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

2.1. Add Repositories

ROCm Documentation, Release 5.7.1

RHEL 9.2

Important: Instructions for Select OS, Red Hat Enterprise Linux 9.2

Add the amdgpu module repository for RHEL 9.2

sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpul]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7.1/rhel /9.2 /main /x86_ 64
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

Add the rocm repository for RHEL9

sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'

[rocm]

name=rocm
baseurl=https://repo.radeon.com/rocm/rhel9/latest /main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

RHEL 9.1

Important: Instructions for Select OS, Red Hat Enterprise Linux 9.1

Add the amdgpu module repository for RHEL 9.1

sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7.1/rhel /9.1 /main /x86_ 64
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

Add the rocm repository for RHEL9

sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'

[rocm]

name=rocm
baseurl=https://repo.radeon.com/rocm/rhel9/latest /main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

10

Chapter 2. Quick Start (Linux)

ROCm Documentation, Release 5.7.1

2. Clean cached files from enabled repositories

sudo yum clean all

SUSE Linux Enterprise Server
1. Add the repositories

SLES 15.5

Important: Instructions for Select OS, SUSE Linux Enterprise Server 15.5

Add the amdgpu module repository for SLES 15.5
sudo tee /etc/zypp/repos.d/amdgpu.repo <<'EOF'
[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7.1/sle/15.5/main/x86_ 64
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

Add the rocm repository for SLES

sudo tee /etc/zypp/repos.d/rocm.repo <<'EOF'
[rocm]

name=rocm
baseurl=https://repo.radeon.com/rocm/zyp,/zypper
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

SLES 15.4

Important: Instructions for Select OS, SUSE Linux Enterprise Server 15.4

Add the amdgpu module repository for SLES 15.4
sudo tee /etc/zypp/repos.d/amdgpu.repo <<'EOF'
[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/5.7.1/sle/15.4/main /x86_ 64
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

Add the rocm repository for SLES

sudo tee /etc/zypp/repos.d/rocm.repo <<'EOF'
[rocm]

name=rocm

(continues on next page)

2.1. Add Repositories 11

ROCm Documentation, Release 5.7.1

(continued from previous page)

baseurl=https://repo.radeon.com/rocm/zyp/zypper
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

2. Update the new repository

sudo zypper ref

2.2 Install drivers

Install the amdgpu-dkms kernel module, aka driver, on your system.

Ubuntu

sudo apt install amdgpu-dkms

Red Hat Enterprise Linux

sudo yum install amdgpu-dkms

SUSE Linux Enterprise Server

sudo zypper install amdgpu-dkms

2.3 Install ROCm runtimes

Install the rocm-hip-libraries meta-package. This contains dependencies for most common ROCm applica-
tions.

Ubuntu

sudo apt install rocm-hip-libraries

12 Chapter 2. Quick Start (Linux)

ROCm Documentation, Release 5.7.1

Red Hat Enterprise Linux

sudo yum install rocm-hip-libraries

SUSE Linux Enterprise Server

sudo zypper install rocm-hip-libraries

2.4 Reboot the system

Loading the new driver requires a reboot of the system.

‘ sudo reboot

2.4. Reboot the system

13

ROCm Documentation, Release 5.7.1

14 Chapter 2. Quick Start (Linux)

CHAPTER

THREE

DEPLOY ROCM ON LINUX

Start with Quick Start (Linux) or follow the detailed instructions below.

3.1 Prepare to Install

Prerequisites The prerequisites page lists the required steps before installation.
Install Choices Package manager vs AMDGPU Installer
Standard Packages vs Multi-Version Packages

3.2 Choose your install method

Package Manager Directly use your distribution’s package manager to install ROCm.

AMDGPU Installer Use an installer tool that orchestrates changes via the package manager.

3.3 See Also

e GPU Support and OS Compatibility (Linux)

3.4 ROCm Installation Options (Linux)

Users installing ROCm must choose between various installation options. A new user should follow the
Quick Start guide.

15

ROCm Documentation, Release 5.7.1

3.4.1 Package Manager versus AMDGPU Installer?

ROCm supports two methods for installation:
e Directly using the Linux distribution’s package manager
e The amdgpu-install script
There is no difference in the final installation state when choosing either option.

Using the distribution’s package manager lets the user install, upgrade and uninstall using familiar commands
and workflows. Third party ecosystem support is the same as your OS package manager.

The amdgpu-install script is a wrapper around the package manager. The same packages are installed by
this script as the package manager system.

The installer automates the installation process for the AMDGPU and ROCm stack. It handles the complete
installation process for ROCm, including setting up the repository, cleaning the system, updating, and
installing the desired drivers and meta-packages. Users who are less familiar with the package manager can
choose this method for ROCm installation.

3.4.2 Single Version ROCm install versus Multi-Version

ROCm packages are versioned with both semantic versioning that is package specific and a ROCm release
version.

3.4.2.1 Single-version Installation

The single-version ROCm installation refers to the following:
o Installation of a single instance of the ROCm release on a system

o Use of non-versioned ROCm meta-packages

3.4.2.2 Multi-version Installation

The multi-version installation refers to the following:

o Installation of multiple instances of the ROCm stack on a system. Extending the package name and
its dependencies with the release version adds the ability to support multiple versions of packages
simultaneously.

e Use of versioned ROCm meta-packages.

Attention: ROCm packages that were previously installed from a single-version installation must be
removed before proceeding with the multi-version installation to avoid conflicts.

Note: Multiversion install is not available for the kernel driver module, also referred to as AMDGPU.

The following image demonstrates the difference between single-version and multi-version ROCm installation
types:

16 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

ROCm Installation Types

sing! — . | ' I iversion ROCm

Fig. 3.1: ROCm Installation Types

3.5 Installation Prerequisites (Linux)

You must perform the following steps before installing ROCm and check if the system meets all the require-
ments to proceed with the installation.

3.5.1 Confirm the System Has a Supported Linux Distribution Version

The ROCm installation is supported only on specific Linux distributions and kernel versions.

3.5.1.1 Check the Linux Distribution and Kernel Version on Your System

This section discusses obtaining information about the Linux distribution and kernel version.

3.5.1.1.1 Linux Distribution Information

Verify the Linux distribution using the following steps:

1. To obtain the Linux distribution information, type the following command on your system from the
Command Line Interface (CLI):

uname -m && cat /etc/*release

2. Confirm that the obtained Linux distribution information matches with those listed in Supported Linux
Distributions.

Example: Running the command above on an Ubuntu system results in the following output:

x86_ 64
DISTRIB ID=Ubuntu
DISTRIB__RELEASE=20.04

(continues on next page)

3.5. Installation Prerequisites (Linux) 17

ROCm Documentation, Release 5.7.1

(continued from previous page)

DISTRIB_CODENAME=focal
DISTRIB__DESCRIPTION="Ubuntu 20.04.5 LTS”

3.5.1.1.2 Kernel Information

Verify the kernel version using the following steps:

1. To check the kernel version of your Linux system, type the following command:

uname -srmv

Example: The output of the command above lists the kernel version in the following format:

Linux 5.15.0-46-generic #44~20.04.5-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022 x86_ 64

2. Confirm that the obtained kernel version information matches with system requirements as listed in
Supported Linux Distributions.

3.5.2 Additional package repositories
On some distributions the ROCm packages depend on packages outside the default package repositories.

These extra repositories need to be enabled before installation. Follow the instructions below based on your
distributions.

Ubuntu

All packages are available in the default Ubuntu repositories, therefore no additional repositories need to be
added.

Red Hat Enterprise Linux
1. Add the EPEL repository

RHEL 8

wget https://dl.fedoraproject.org/pub/epel /epel-release-latest-8.noarch.rpm
sudo rpm -ivh epel-release-latest-8.noarch.rpm

RHEL 9

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm
sudo rpm -ivh epel-release-latest-9.noarch.rpm

18 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

2. Enable the CodeReady Linux Builder repository

Run the following command and follow the instructions.

sudo crb enable

SUSE Linux Enterprise Server

Add the perl languages repository.

SLES 15.4

zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/SLE_ 15_SP4/
—devel:languages:perl.repo

SLES 15.5

zypper addrepo https://download.opensuse.org/repositories/devel: /languages: /perl/15.5 /devel:languages:perl.repo

3.5.3 Kernel headers and development packages

The driver package uses DKMS (Dynamic Kernel Module Support) to build the amdgpu-dkms module
(driver) for the installed kernels. This requires the Linux kernel headers and modules to be installed for
each. Usually these are automatically installed with the kernel, but if you have multiple kernel versions
or you have downloaded the kernel images and not the kernel meta-packages then they must be manually
installed.

To install for the currently active kernel run the command corresponding to your distribution.

Ubuntu

» »

‘ sudo apt install "linux-headers-$(uname -r)” "linux-modules-extra-$(uname -r)

Red Hat Enterprise Linux

‘ sudo yum install kernel-headers kernel-devel

SUSE Linux Enterprise Server

sudo zypper install kernel-default-devel

3.5. Installation Prerequisites (Linux) 19

https://en.wikipedia.org/wiki/Dynamic_Kernel_Module_Support

ROCm Documentation, Release 5.7.1

3.5.4 Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources. Use of the
video group is recommended for all ROCm-supported operating systems.

1. To check the groups in your system, issue the following command:

groups

2. Add yourself to the render and video group using the command:

sudo usermod -a -G render,video $LOGNAME

To add all future users to the video and render groups by default, run the following commands:

echo '"ADD EXTRA GROUPS=1'| sudo tee -a /etc/adduser.conf
echo '"EXTRA__GROUPS=video' | sudo tee -a /etc/adduser.conf
echo '"EXTRA GROUPS=render' | sudo tee -a /etc/adduser.conf

3.6 Installation via Package manager

Install How to install ROCm?
Upgrade Instructions for upgrading an existing ROCm installation.
Uninstall Steps for removing ROCm packages libraries and tools.

Package Manager Integration Information about packages.

3.6.1 See Also

e GPU Support and OS Compatibility (Linux)

3.6.2 Installation (Linux)

Warning: ROCm currently doesn’t support integrated graphics. Should your system have an AMD IGP
installed, disable it in the BIOS prior to using ROCm. If the driver can enumerate the IGP, the ROCm
runtime may crash the system, even if told to omit it via HIP_ VISIBLE DEVICES.

3.6.2.1 Understanding the Release-specific AMDGPU and ROCm Repositories on Linux Distributions

The release-specific repositories consist of packages from a specific release of versions of AMDGPU and
ROCm. The repositories are not updated for the latest packages with subsequent releases. When a new
ROCm release is available, the new repository, specific to that release, is added. You can select a specific
release to install, update the previously installed single version to the later available release, or add the latest
version of ROCm along with the currently installed version by using the multi-version ROCm packages.

20 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

3.6.2.2 Step by Step Instructions
Ubuntu

1. Download and convert the package signing key

Make the directory if it doesn't exist yet.
This location is recommended by the distribution maintainers.
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
Download the key, convert the signing-key to a full
keyring required by apt and store in the keyring directory
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | \
gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null

Note: The GPG key may change; ensure it is updated when installing a new release. If the key signature
verification fails while updating, re-add the key from the ROCm to the apt repository as mentioned above.
The current rocm.gpg.key is not available in a standard key ring distribution but has the following SHA1
sum hash: 73f5d8100de6048aa38a8b84cd9a87f05177d208 rocm.gpg.key

2. Add the AMDGPU Repository and Install the Kernel-mode Driver

Tip: If you have a version of the kernel-mode driver installed, you may skip this section.

To add the AMDGPU repository, follow these steps:

Ubuntu 22.04

Important: Instructions for Ubuntu 22.04

version
ver=5.7.1

amdgpu repository for focal
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$ver /ubuntu,,
—jammy main” \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

3.6. Installation via Package manager 21

ROCm Documentation, Release 5.7.1

Ubuntu 20.04

Important: Instructions for Ubuntu 20.04

version
ver=5.7.1

amdgpu repository for focal
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$ver /ubuntu,,
—focal main” \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

Install the kernel mode driver and reboot the system using the following commands:

sudo apt install amdgpu-dkms
sudo reboot

3. Add the ROCm Repository

To add the ROCm repository, use the following steps:

Ubuntu 22.04

Important: Instructions for Ubuntu 22.04

ROCm repositories for jammy
for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7.1; do
echo ”deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$ver jammy
—main” \
| sudo tee --append /etc/apt/sources.list.d /rocm.list
done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

Ubuntu 20.04

Important: Instructions for Ubuntu 20.04

ROCm repositories for focal
for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7.1; do
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$ver focal,
—main” \
| sudo tee --append /etc/apt/sources.list.d/rocm.list
done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600" \

(continues on next page)

22 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

(continued from previous page)

| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

4. Install packages

Install packages of your choice in a single-version ROCm install or in a multi-version ROCm install fash-
ion. For more information on what single/multi-version installations are, refer to Single Version ROCm
install versus Multi-Version. For a comprehensive list of meta-packages, refer to Meta-packages and Their
Descriptions.

e Sample Single-version installation

sudo apt install rocm-hip-sdk

e Sample Multi-version installation

sudo apt install rocm-hip-sdk5.7.1 rocm-hip-sdk5.6.1 rocm-hip-sdk5.5.3

Red Hat Enterprise Linux

1. Add the AMDGPU Stack Repository and Install the Kernel-mode Driver

Tip: If you have a version of the kernel-mode driver installed, you may skip this section.

RHEL 8.8

Important: Instructions for Red Hat Enterprise Linux 8.8

version
ver=>5.7.1

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel/8.8 /main /x86_ 64/
enabled=1

priority=>50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

3.6. Installation via Package manager 23

ROCm Documentation, Release 5.7.1

RHEL 8.7

Important: Instructions for Red Hat Enterprise Linux 8.7

version

ver=>5.7.1

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel /8.7 /main/x86_ 64/
enabled=1

priority=50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

RHEL 8.6

Important: Instructions for Red Hat Enterprise Linux 8.6

version
ver=>5.7.1

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel /8.6 /main/x86_ 64/
enabled=1

priority=>50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

RHEL 9.2

Important: Instructions for Red Hat Enterprise Linux 9.2

version
ver=>5.7.1

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel /9.2 /main/x86_ 64/
enabled=1

(continues on next page)

24

Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

(continued from previous page)

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

sudo yum clean all

RHEL 9.1

Important: Instructions for Red Hat Enterprise Linux 9.1

version
ver=5.7.1

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/rhel/9.1/main/x86_ 64/
enabled=1

priority=50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

Install the kernel mode driver and reboot the system using the following commands:

sudo yum install amdgpu-dkms
sudo reboot

2. Add the ROCm Stack Repository

To add the ROCm repository, use the following steps, based on your distribution:

RHEL 8

for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver|

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$ver/main
enabled=1

priority=>50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo yum clean all

3.6. Installation via Package manager

25

ROCm Documentation, Release 5.7.1

RHEL 9

for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver|

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel9/$ver/main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo yum clean all

3. Install packages

Install packages of your choice in a single-version ROCm install or in a multi-version ROCm install fash-
ion. For more information on what single/multi-version installations are, refer to Single Version ROCm
install versus Multi-Version. For a comprehensive list of meta-packages, refer to Meta-packages and Their
Descriptions.

« Sample Single-version installation

sudo yum install rocm-hip-sdk

e Sample Multi-version installation

sudo yum install rocm-hip-sdk5.7.1 rocm-hip-sdk5.6.1

SUSE Linux Enterprise Server

1. Add the AMDGPU Repository and Install the Kernel-mode Driver

Tip: If you have a version of the kernel-mode driver installed, you may skip this section.

SLES 15.5

Important: Instructions for SUSE Linux Enterprise Server 15.5

version
ver=5.7.1

sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF

[amdgpul]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/sle/15.5/main/x86_ 64
enabled=1

gpgcheck=1

(continues on next page)

26 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

(continued from previous page)

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo zypper ref

SLES 15.4

Important: Instructions for SUSE Linux Enterprise Server 15.4

version
ver=5.7.1

sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF

[amdgpul]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$ver/sle/15.4/main/x86_ 64
enabled=1

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo zypper ref

Install the kernel mode driver and reboot the system using the following commands:

sudo zypper --gpg-auto-import-keys install amdgpu-dkms
sudo reboot

2. Add the ROCm Stack Repository

To add the ROCm repository, use the following steps:

for ver in 5.3.3 5.4.6 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/zypp/repos.d/rocm.repo <<EOF
[ROCm-$ver]

name=ROCm$ver

name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/$ver/main
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo zypper ref

3.6. Installation via Package manager

27

ROCm Documentation, Release 5.7.1

3. Install packages

Install packages of your choice in a single-version ROCm install or in a multi-version ROCm install fash-
ion. For more information on what single/multi-version installations are, refer to Single Version ROCm
install versus Multi-Version. For a comprehensive list of meta-packages, refer to Meta-packages and Their
Descriptions.

e Sample Single-version installation

sudo zypper --gpg-auto-import-keys install rocm-hip-sdk

Sample Multi-version installation

sudo zypper --gpg-auto-import-keys install rocm-hip-sdk5.7.1 rocm-hip-sdk5.6.1

3.6.2.3 Post-install Actions and Verification Process

The post-install actions listed here are optional and depend on your use case, but are generally useful.
Verification of the install is advised.

3.6.2.3.1 Post-install Actions

1. Instruct the system linker where to find the shared objects (.so files) for ROCm applications.

sudo tee --append /etc/ld.so.conf.d/rocm.conf <<EOF
/opt/rocm/lib

/opt/rocm/lib64

EOF

sudo ldconfig

Note: Multi-version installations require extra care. Having multiple versions on the system linker
library search path is unadvised. One must take care both at compile-time and at run-time to assure
that the proper libraries are picked up. You can override ld.so.conf entries on a case-by-case basis
using the LD__LIBRARY_PATH environmental variable.

2. Add binary paths to the PATH environment variable.

export PATH=$PATH:/opt/rocm-5.7.1/bin: /opt/rocm-5.7.1/opencl/bin

Attention: When using CMake to build applications, having the ROCm install location on the
PATH subtly affects how ROCm libraries are searched for. See Config Mode Search Procedure and
CMAKE_FIND_USE_SYSTEM_ENVIRONMENT_PATH for details.

(Entries in the PATH minus bin and sbin are added to library search paths, therefore this conve-
nience will affect builds and result in ROCm libraries almost always being found. This may be an
issue when you’re developing these libraries or want to use self-built versions of them.)

28

Chapter 3. Deploy ROCm on Linux

https://cmake.org/cmake/help/latest/command/find_package.html#config-mode-search-procedure
https://cmake.org/cmake/help/latest/variable/CMAKE_FIND_USE_SYSTEM_ENVIRONMENT_PATH.html

ROCm Documentation, Release 5.7.1

3.6.2.3.2 Verifying Kernel-mode Driver Installation

Check the installation of the kernel-mode driver by typing the command given below:

dkms status

3.6.2.3.3 Verifying ROCm Installation

After completing the ROCm installation, execute the following commands on the system to verify if the
installation is successful. If you see your GPUs listed by both commands, the installation is considered
successful:

/opt/rocm/bin/rocminfo
4 OR
/opt/rocm/opencl/bin/clinfo

3.6.2.3.4 Verifying Package Installation

To ensure the packages are installed successfully, use the following commands:

Ubuntu

sudo apt list --installed

Red Hat Enterprise Linux

sudo yum list installed

SUSE Linux Enterprise Server

sudo zypper search --installed-only

3.6.3 Upgrade ROCm with the package manager

This section explains how to upgrade the existing AMDGPU driver and ROCm packages to the latest version
using your OS’s distributed package manager.

Note: Package upgrade is applicable to single-version packages only. If the preference is to install an
updated version of the ROCm along with the currently installed version, refer to the Installation (Linux)

page.

3.6. Installation via Package manager 29

ROCm Documentation, Release 5.7.1

3.6.3.1 Upgrade Steps

3.6.3.1.1 Update the AMDGPU repository

Execute the commands below based on your distribution to point the amdgpu repository to the new release.

Ubuntu

Ubuntu 20.04

version
version=>5.7

amdgpu repository for focal
echo ”deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$version/
—ubuntu focal main” \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

Ubuntu 22.04

version
version=>5.7

amdgpu repository for jammy
echo ”deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/$version/
—ubuntu jammy main” \
| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

Red Hat Enterprise Linux

RHEL 8.6

version
version=>5.7

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpul]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel /8.6 /main/x86 64/
enabled=1

priority=50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

30 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

RHEL 8.7

version
version=>5.7

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpul]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel /8.7 /main /x86 64/
enabled=1

priority=50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

RHEL 8.8

version
version=>5.7

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel /8.8 /main/x86 64/
enabled=1

priority=50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

RHEL 9.1

version
version=5.7

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel/9.1/main /x86_ 64/
enabled=1

priority=>50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

3.6. Installation via Package manager 31

ROCm Documentation, Release 5.7.1

RHEL 9.2

version
version=5.7

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF

[amdgpul]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/rhel /9.2 /main /x86 64/
enabled=1

priority=>50

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

SUSE Linux Enterprise Server

SLES 15.4

version
version=5.7

sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/sle/15.4/main/x86_ 64
enabled=1

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo zypper ref

SLES 15.5

version
version=>5.7

sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF

[amdgpu]

name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/$version/sle/15.5/main/x86_ 64
enabled=1

gpgcheck=1

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo zypper ref

32 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

3.6.3.1.2 Upgrade the kernel-mode driver & reboot

Upgrade the kernel mode driver and reboot the system using the following commands based on your distri-
bution:

Ubuntu

sudo apt install amdgpu-dkms
sudo reboot

Red Hat Enterprise Linux

sudo yum install amdgpu-dkms
sudo reboot

SUSE Linux Enterprise Server

sudo zypper --gpg-auto-import-keys install amdgpu-dkms
sudo reboot

3.6.3.1.3 Update the ROCm repository

Execute the commands below based on your distribution to point the rocm repository to the new release.

Ubuntu

Ubuntu 20.04

version
version=>5.7

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$version,
—focal main” \
| sudo tee /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600" \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

3.6. Installation via Package manager 33

ROCm Documentation, Release 5.7.1

Ubuntu 22.04

version
version=>5.7

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/$version,
—jammy main” \
| sudo tee /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600" \
| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

Red Hat Enterprise Linux

RHEL 8

version
version=>5.7

sudo tee /etc/yum.repos.d/rocm.repo <<EOF

[ROCm-$ver]

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$version/main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

RHEL 9

version
version=>5.7

sudo tee /etc/yum.repos.d/rocm.repo <<EOF

[ROCm-$ver]

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel9/$version/main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo yum clean all

34 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

SUSE Linux Enterprise Server

version
version=>5.7

sudo tee /etc/zypp/repos.d/rocm.repo <<EOF
[ROCm-$ver|

name=ROCm$ver

name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/$version/main
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

EOF

sudo zypper ref

3.6.3.1.4 Upgrade the ROCm packages

Your packages can be upgraded now through their meta-packages, see the following example based on your
distribution:

Ubuntu

sudo apt install --only-upgrade rocm-hip-sdk

Red Hat Enterprise Linux

sudo yum update rocm-hip-sdk

Suse Linux Enterprise Server

sudo zypper --gpg-auto-import-keys update rocm-hip-sdk

3.6.3.2 Verification Process

To verify if the upgrade is successful, refer to the Post-install Actions and Verification Process given in the
Installation section.

3.6.4 Uninstallation with package manager (Linux)

This section describes how to uninstall ROCm with the Linux distribution’s package manager. This method
should be used if ROCm was installed via the package manager. If the installer script was used for installation,
then it should be used for uninstallation too, refer to Installer Script Uninstallation (Linux).

3.6. Installation via Package manager 35

ROCm Documentation, Release 5.7.1

Ubuntu

Uninstalling Specific Meta-packages

Uninstall single-version ROCm packages

sudo apt autoremove <package-name>

Uninstall multiversion ROCm packages

sudo apt autoremove <package-name with release version>

Complete Uninstallation of ROCm Packages

Uninstall single-version ROCm packages

sudo apt autoremove rocm-core

Uninstall multiversion ROCm packages

sudo apt autoremove rocm-core<release version>

Uninstall Kernel-mode Driver

sudo apt autoremove amdgpu-dkms

Remove ROCm and AMDGPU Repositories

1. Execute these commands:

sudo rm /etc/apt/sources.list.d/<rocm_ repository-name>.list
sudo rm /etc/apt/sources.list.d/<amdgpu_ repository-name> list

2. Clear the cache and clean the system.

sudo rm -rf /var/cache/apt/*
sudo apt-get clean all

3. Restart the system.

sudo reboot

Red Hat Enterprise Linux

Uninstalling Specific Meta-packages

Uninstall single-version ROCm packages

sudo yum remove <package-name>

Uninstall multiversion ROCm packages

sudo yum remove <package-name with release version>

36

Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

Complete Uninstallation of ROCm Packages

Uninstall single-version ROCm packages
sudo yum remove rocm-core

Uninstall multiversion ROCm packages
sudo yum remove rocm-core<release version>

Uninstall Kernel-mode Driver

sudo yum autoremove amdgpu-dkms

Remove ROCm and AMDGPU Repositories

1. Execute these commands:

sudo rm -rf /etc/yum.repos.d/<rocm_ repository-name> # Remove only rocm repo
sudo rm -rf /etc/yum.repos.d/<amdgpu_ repository-name> # Remove only amdgpu repo

2. Clear the cache and clean the system.

sudo yum clean all

sudo rm -rf /var/cache/yum #Remove the cache

3. Restart the system.

sudo reboot

SUSE Linux Enterprise Server

Uninstalling Specific Meta-packages

Uninstall all single-version ROCm packages
sudo zypper remove <package-name>
Uninstall all multiversion ROCm packages

sudo zypper remove <package-name with release version>

Complete Uninstallation of ROCm Packages

Uninstall all single-version ROCm packages
sudo zypper remove rocm-core

Uninstall all multiversion ROCm packages
sudo zypper remove rocm-core<release version>

3.6. Installation via Package manager

37

ROCm Documentation, Release 5.7.1

Uninstall Kernel-mode Driver

sudo zypper remove --clean-deps amdgpu-dkms

Remove ROCm and AMDGPU Repositories

1. Execute these commands:

sudo zypper removerepo <rocm_ repository-name>
sudo zypper removerepo <amdgpu_ repository-name>

2. Clear the cache and clean the system.

sudo zypper clean --all

3. Restart the system.

sudo reboot

3.6.5 Package Manager Integration
This section provides information about the required meta-packages for the following AMD ROCm program-
ming models:

o Heterogeneous-Computing Interface for Portability (HIP)

e OpenCL™

e OpenMP™

3.6.5.1 ROCm Package Naming Conventions

A meta-package is a grouping of related packages and dependencies used to support a specific use case.
All meta-packages exist in both versioned and non-versioned forms.

e Non-versioned packages — For a single-version installation of the ROCm stack

e Versioned packages — For multi-version installations of the ROCm stack

Fig. 3.2 demonstrates the single and multi-version ROCm packages’ naming structure, including examples
for various Linux distributions. See terms below:

Module - It is the part of the package that represents the name of the ROCm component.
Example: The examples mentioned in the image represent the ROCm HIP module.

Module version - It is the version of the library released in that package. It should increase with a newer
release.

Release version - It shows the ROCm release version when the package was released.
Example: 50400 points to the ROCm 5.4.0 release.

Build id - It represents the Jenkins build number for that release.

Arch - It shows the architecture for which the package was created.

Distro - It describes the distribution for which the package was created. It is valid only for rpm packages.

38 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

ROCm Release Package Naming

H l l r
Module Version ~ Buildid arch Module Version Build id arch
hip-devel-5.4.22801.50400-72.e18.x86_64.rpm hip-devel5.4.0-5.4.22801.50400-72.el8.x86_64.rpm
Module Release Version distro Module Release Version distro
Examples
Ubuntu 22.04 packages hip-dev_5.4.22801.50400-72~22.04_amd64.deb Ubuntu 22.04 packages i deys.4.0.5.4.22801.50400-72~22.04_amd64.deb
SLES 15 SP4 packages hip-devel-5.4.22801.50400-sles153.72.x86_64.rom SLES 15 SP4 packages hip-devel5.4.0-5.4.22801.50400-sles153.72.x86_64.rpm
RHEL 8.x packages hip-devel-5.4.22801.50400-72.¢l8.x86_64.rpm RHEL 8.x packages hip-devel5.4.0-5.4.22801.50400-72.¢l8.x86_64.rpm
RHEL 9.x packages hip-devel-5.4.22801.50400-72.el9.x86_64.rpm RHEL 9.x packages hip-devel5.4.0-5.4.22801.50400-72.el9.x86_64.rpm

Fig. 3.2: ROCm Release Package Naming

Example: el8 represents RHEL 8.x packages.

3.6.5.2 Components of ROCm Programming Models
Fig. 3.3 demonstrates the high-level layered architecture of ROCm programming models and their meta-
packages. All meta-packages are a combination of required packages and libraries.
Example:
e rocm-hip-runtime is used to deploy on supported machines to execute HIP applications.

e rocm-hip-sdk contains runtime components to deploy and execute HIP applications.

Note: rocm-llvim is not a meta-package but a single package that installs the ROCm clang compiler files.

3.6. Installation via Package manager 39

ROCm Documentation, Release 5.7.1

Developer Tools rocm-developer-tools

rocm-hip-sdk

ROCM Software
Development Kits

rocm-hip-libraries

rocm-opencl-sdk rocm-openmp-sdk

rocm-hip-runtime-devel

“

rocm-hip-runtime [}

e

rocm-language-runtime

Runtime

Drivers Kernel-gpu-driver

os RHEL/CentOS SLES/OpenSUSE Ubuntu/Debian

Bl ROCm ML Programming Model
ROCm OpenMP Programming Model

Platform

ROCm Opencl Programming Model
[l ROCm HIP Programming Model
W rROCm llvm
Il ROCm Components
[l ROCm Components Categories

Fig. 3.3: ROCm Meta Packages

Table 3.1: Meta-packages and Their Descriptions

Meta-packages

Description

rocm-language-runtime

The ROCm runtime

rocm-hip-runtime

Run HIP applications written for the AMD platform

rocm-opencl-runtime

Run OpenCL-based applications on the AMD platform

rocm-hip-runtime-devel

Develop applications on HIP or port from CUDA

rocm-opencl-sdk

Develop applications in OpenCL for the AMD platform

rocm-hip-libraries

HIP libraries optimized for the AMD platform

rocm-hip-sdk

Develop or port HIP applications and libraries for the AMD platform

rocm-developer-tools

Debug and profile HIP applications

rocm-ml-sdk

Develop and run Machine Learning applications with optimized for AMD

rocm-ml-libraries

Key Machine Learning libraries, specifically MIOpen

rocm-openmp-sdk

Develop OpenMP-based applications for the AMD platform

rocm-openmp-runtime

Run OpenMP-based applications for the AMD platform

3.6.5.3 Packages in ROCm Programming Models

This section discusses the available meta-packages and their packages. The following image visualizes the
meta-packages and their associated packages in a ROCm programming model.

o Meta-packages can include another meta-package.

e rocm-core package is common across all the meta-packages.

e Meta-packages and associated packages are represented in the same color.

Note:

Fig. 3.4 is for informational purposes only, as the individual packages in a meta-package are subject
to change. Install meta-packages, and not individual packages, to avoid conflicts.

Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

hsa-amd-aqlprofile H debug-agent H devel H rocprofiler-devel |
rocm-developer-tools
R ene |
Iedk } } H rocm-hip-sdk H rocm-ml-libraries H miopen-hip-devel ‘
rocm-livm ‘ ‘ ‘miopen-hip ‘
rocm-ml-libraries
rocm-core ‘ ‘ rocm-hip-libraries ‘
I B BT P
rocalution-devel ‘ ‘ hipblas-devel ‘ | devel ‘ ‘ blas-devel ‘ ‘ rocwmma-devel ‘
rocm-hip-sdk -

hipfft-devel ‘ ‘ rocrand-devel ‘ | recl-devel ‘ ‘ hipsparse-devel ‘ ‘ hipsolver-devel ‘
rocm-core H hip-librarie H devel H hipfort-devel ‘ ‘ rocsolver-devel ‘
rocblas ‘ ‘ rocalution ‘ ‘ recl ‘
rocm-hip-libraries hipfort ‘ ‘ rocsolver ‘ ‘ rocrand ‘ | rocfft ‘ ‘ rocsparse ‘
P [T T .

| pe p-sdk 1 1 rocm-core H rocm-livm H openmp-extras-devel
| TR } } H I devel H T “ penci-devel H hsakmt-roct-devel ‘

| rocm-opencl-runtime

T R

=E==

Fig. 3.4: Associated Packages

3.7 AMDGPU Install Script

Install How to install ROCm?

Upgrade Instructions for upgrading an existing ROCm installation.

Uninstall Steps for removing ROCm packages, libraries and tools.

3.7.1 See Also

o GPU Support and OS Compatibility (Linux)

3.7.2 Installation with install script

Prior to beginning, please ensure you have the prerequisites installed.

Warning: ROCm currently doesn’t support integrated graphics. Should your system have an AMD IGP
installed, disable it in the BIOS prior to using ROCm. If the driver can enumerate the IGP, the ROCm
runtime may crash the system, even if told to omit it via HIP_ VISIBLE DEVICES.

3.7. AMDGPU Install Script

41

ROCm Documentation, Release 5.7.1

3.7.2.1 Download the Installer Script

To download and install the amdgpu-install script on the system, use the following commands based on your
distribution.

Select OS
Ubuntu

Ubuntu 22.04

Important: Instructions for Select OS, Ubuntu 22.04

sudo apt update
wget https://repo.radeon.com/amdgpu-install/5.7.1 /ubuntu/jammy/amdgpu-install_5.7.50701-1__all.deb
sudo apt install ./amdgpu-install_5.7.50701-1_ all.deb

Ubuntu 20.04

Important: Instructions for Select OS, Ubuntu 20.04

sudo apt update
wget https://repo.radeon.com/amdgpu-install/5.7.1/ubuntu/focal/amdgpu-install 5.7.50701-1_all.deb
sudo apt install ./amdgpu-install_5.7.50701-1__all.deb

Red Hat Enterprise Linux

RHEL 8.8

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.8

sudo yum install https://repo.radeon.com/amdgpu-install/5.7.1/rhel /8.8 /amdgpu-install-5.7.50701-1.el8.noarch.
—rpm

RHEL 8.7

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.7

sudo yum install https://repo.radeon.com/amdgpu-install/5.7.1/rhel /8.7 /amdgpu-install-5.7.50701-1.el8.noarch.
—rpm

42 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

RHEL 8.6

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.6

sudo yum install https://repo.radeon.com/amdgpu-install/5.7.1/rhel /8.6 /amdgpu-install-5.7.50701-1.el8.noarch.
—Tpm

RHEL 9.2

Important: Instructions for Select OS, Red Hat Enterprise Linux 9.2

sudo yum install https://repo.radeon.com/amdgpu-install/5.7.1/rhel /9.2 /amdgpu-install-5.7.50701-1.el9.noarch.
—Trpm

RHEL 9.1

Important: Instructions for Select OS, Red Hat Enterprise Linux 9.1

sudo yum install https://repo.radeon.com/amdgpu-install/5.7.1/rhel /9.1 /amdgpu-install-5.7.50701-1.el9.noarch.
—Trpm

SUSE Linux Enterprise Server

SLES 15.5

Important: Instructions for Select OS, SUSE Linux Enterprise Server 15.5

sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/5.7.1/sle/15.5 /amdgpu-install-5.7.
—50701-1.noarch.rpm

SLES 15.4

Important: Instructions for Select OS, SUSE Linux Enterprise Server 15.4

sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/5.7.1/sle/15.4/amdgpu-install-5.7.
—50701-1.noarch.rpm

3.7. AMDGPU Install Script 43

ROCm Documentation, Release 5.7.1

3.7.2.2 Use cases

Instead of installing individual applications or libraries the installer script groups packages into specific use
cases, matching typical workflows and runtimes.

To display a list of available use cases execute the command:

sudo amdgpu-install --list-usecase

The available use-cases will be printed in a format similar to the example output below.

If --usecase option is not present, the default selection is "graphics,opencl,hip”

Available use cases:

rocm(for users and developers requiring full ROCm stack)
- OpenCL (ROCr/KFD based) runtime

- HIP runtimes

- Machine learning framework

- All ROCm libraries and applications

- ROCm Compiler and device libraries

- ROCr runtime and thunk

Irt(for users of applications requiring ROCm runtime)

- ROCm Compiler and device libraries

- ROCr runtime and thunk

opencl(for users of applications requiring OpenCL on Vega or
later products)

- ROCr based OpenCL

- ROCm Language runtime

openclsdk (for application developers requiring ROCr based OpenCL)
- ROCr based OpenCL

- ROCm Language runtime

- development and SDK files for ROCr based OpenCL

hip(for users of HIP runtime on AMD products)

- HIP runtimes

hiplibsdk (for application developers requiring HIP on AMD products)
- HIP runtimes

- ROCm math libraries

- HIP development libraries

To install use cases specific to your requirements, use the installer amdgpu-install as follows:

e To install a single use case add it with the --usecase option:

sudo amdgpu-install --usecase=rocm

For multiple use cases separate them with commas:

sudo amdgpu-install --usecase=hiplibsdk,rocm

e For graphical workloads using the open-source driver add graphics. For example:

‘ sudo amdgpu-install --usecase=graphics,rocm

e For graphical workloads using the proprietary driver add graphics. For example:

‘ sudo amdgpu-install --usecase=workstation,rocm

44 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

3.7.2.3 Single-version ROCm Installation

By default (without the --rocmrelease option) the installer script will install packages in the single-version
layout.

3.7.2.4 Multi-version ROCm Installation

For the multi-version ROCm installation you must use the installer script from the latest release of ROCm
that you wish to install.

Example: If you want to install ROCm releases 5.5.3, 5.6.1 and 5.7.1 simultaneously, you are required to
download the installer from the latest ROCm release 5.7.1.

3.7.2.4.1 Add Required Repositories

You must add the ROCm repositories manually for all ROCm releases you want to install except the latest
one. The amdgpu-install script automatically adds the required repositories for the latest release.

Run the following commands based on your distribution to add the repositories:
Select OS
Ubuntu

Ubuntu 22.04

Important: Instructions for Select OS, Ubuntu 22.04

for ver in 5.5.3 5.6.1 5.7.1; do

echo ”deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/rocm/apt/
—$ver jammy main” | sudo tee /etc/apt/sources.list.d/rocm.list

done

echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-
—pin-600

sudo apt update

Ubuntu 20.04

Important: Instructions for Select OS, Ubuntu 20.04

for ver in 5.5.3 5.6.1 5.7.1; do

echo ”deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.radeon.com/rocm/apt/
—$ver focal main” | sudo tee /etc/apt/sources.list.d/rocm.list

done

echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/apt/preferences.d/rocm-
—pin-600

sudo apt update

3.7. AMDGPU Install Script 45

ROCm Documentation, Release 5.7.1

Red Hat Enterprise Linux

RHEL 8.8

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.8

for ver in 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$ver/main
enabled=1

priority=>50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo yum clean all

RHEL 8.7

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.7

for ver in 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver|

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$ver/main
enabled=1

priority=50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo yum clean all

RHEL 8.6

Important: Instructions for Select OS, Red Hat Enterprise Linux 8.6

for ver in 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver|

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$ver /main
enabled=1

priority=>50

gpgcheck=1

(continues on next page)

46

Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

(continued from previous page)

gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo yum clean all

RHEL 9.2

Important: Instructions for Select OS, Red Hat Enterprise Linux 9.2

for ver in 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver|

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel9/$ver/main
enabled=1

priority=>50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo yum clean all

RHEL 9.1

Important: Instructions for Select OS, Red Hat Enterprise Linux 9.1

for ver in 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]

name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel9/$ver/main
enabled=1

priority=>50

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo yum clean all

3.7. AMDGPU Install Script

47

ROCm Documentation, Release 5.7.1

SUSE Linux Enterprise Server

for ver in 5.5.3 5.6.1 5.7.1; do

sudo tee --append /etc/zypp/repos.d/rocm.repo <<EOF
name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/$ver/main
enabled=1

gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

done

sudo zypper ref

3.7.2.4.2 Install packages

Use the installer script as given below:

sudo amdgpu-install --usecase=rocm --rocmrelease=<release-number-1>
sudo amdgpu-install --usecase=rocm --rocmrelease=<release-number-2>
sudo amdgpu-install --usecase=rocm --rocmrelease=<release-number-3>

Following are examples of ROCm multi-version installation. The kernel-mode driver, associated with the
ROCm release 5.7.1, will be installed as its latest release in the list.

sudo amdgpu-install --usecase=rocm --rocmrelease=5.7.1
sudo amdgpu-install --usecase=rocm --rocmrelease=>5.6.1
sudo amdgpu-install --usecase=rocm --rocmrelease=>5.5.3

3.7.2.5 Additional options

3.7.2.5.1 Unattended installation

Adding -y as a parameter to amdgpu-install skips user prompts (for automation). Example: amdgpu-install
-y --usecase=rocm

3.7.2.5.2 Skipping kernel mode driver installation

The installer script tries to install the kernel mode driver along with the requested use cases. This might
be unnecessary as in the case of docker containers or you may wish to keep a specific version when using
multi-version installation, and not have the last installed version overwrite the kernel mode driver.

To skip the installation of the kernel-mode driver add the --no-dkms option when calling the installer script.

48 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.7.1

3.7.3 Upgrading with the Installer Script (Linux)

The upgrade procedure with the installer script is exactly the same as installing for 1st time use. Refer to

the Installation with install script section on the exact procedure to follow.

3.7.4 Installer Script Uninstallation (Linux)

To uninstall all ROCm packages and the kernel-mode driver the following commands can be used.

Uninstalling Single-Version Install

sudo amdgpu-install --uninstall

Uninstalling a Specific ROCm Release

sudo amdgpu-install --uninstall --rocmrelease=<release-number>

Uninstalling all ROCm Releases

sudo amdgpu-install --uninstall --rocmrelease=all

3.7. AMDGPU Install Script

49

ROCm Documentation, Release 5.7.1

50 Chapter 3. Deploy ROCm on Linux

CHAPTER

FOUR

QUICK START (WINDOWS)

The steps to install the HIP SDK for Windows are described in this document.

4.1 System Requirements

The HIP SDK is supported on Windows 10 and 11. The HIP SDK may be installed on a system without
AMD GPUs to use the build toolchains. To run HIP applications, a compatible GPU is required. Please see
the supported GPU guide for more details.

4.2 HIP SDK Installation

4.2.1 Download the installer

Download the installer from the HIP-SDK download page.

4.2.2 Launching the installer

To launch the AMD HIP SDK Installer, click the Setup icon shown in Fig. 4.1.

"m,

Setup

Fig. 4.1: Setup Icon
The installer requires Administrator Privileges, so you may be greeted with a User Access Control (UAC)
pop-up. Click Yes.

The installer executable will temporarily extract installer packages to C:\AMD which it will remove after
installation completes. This extraction is signified by the “Initializing install” window in Fig. 4.4.

ol

https://www.amd.com/en/developer/rocm-hub/hip-sdk.html

ROCm Documentation, Release 5.7.1

User Account Control

Do you want to allow this app to make
changes to your device?

AMD Software: Adrenalin Edition

Verified publisher: Advanced Micro Devices, Inc
File origin: Hard drive on this computer

Show more details

Fig. 4.2: User Access Control pop-up

52 Chapter 4. Quick Start (Windows)

ROCm Documentation, Release 5.7.1

User Account Control

Do you want to allow this app to make
changes to your device?

‘l AMD Software: Adrenalin Edition

Verified publisher: Advanced Micro Devices, Inc
File origin: Hard drive on this computer

Show more details

-)

Fig. 4.3: User Access Control pop-up

. e e

S

AMD¢ o

Software _

[

g

Initializing Install

Fig. 4.4: Installer initialization window

4.2. HIP SDK Installation 53

ROCm Documentation, Release 5.7.1

The installer will then detect your system configuration as per Fig. 4.5 to decide, which installable components
are applicable to your system.

&\ AMD HIP SDK Installer

—_— p— e

SN

-_—

AMDAl
HIP SDK

Part of the ROCm Open Software Platform

Detectir stem con ran g ibility. Cancel

Fig. 4.5: Installer initialization window.

4.2.3 Customizing the install
When the installer launches, it displays a window that lets the user customize the installation. By default,

all components are selected for installation. Refer to Fig. 4.6 for an instance when the Select All option is
turned on.

4.2.3.1 HIP SDK Installer

The HIP SDK installation options are listed in Table 4.1.

Table 4.1: HIP SDK Components for Installation

HIP Components Install Type Additional Options

HIP SDK Core 5.5.0 Install location

HIP Libraries Full, Partial, None | Runtime, Development (Libs and headers)
HIP Runtime Compiler | Full, Partial, None | Runtime, Development (Headers)

HIP Ray Tracing Full, Partial, None | Runtime, Development (Headers)

Visual Studio Plugin Full, Partial, None | Visual Studio 2017, 2019, 2022 Plugin

54 Chapter 4. Quick Start (Windows)

ROCm Documentation, Release 5.7.1

&\ AMD HIP SDK Installer

T - A

N

AMD HIP SDK = o . : DeSelect All

—

HIP SDK Core
HIP Libraries

HIP Runtime Compiler

tated in the d User N : Li Cancel

Agresment {

Fig. 4.6: Installer initialization window.

4.2. HIP SDK Installation 55

ROCm Documentation, Release 5.7.1

Note: The Select/DeSelect All option only applies to the installation of HIP SDK components. To install
the bundled AMD Display Driver, manually select the install type.

Tip: Should you only wish to install a few select components, DeSelecting All and then picking the individual
components may be more convenient.

4.2.3.2 AMD Display Driver

The HIP SDK installer bundles an AMD Radeon Software PRO 23.10 installer. The supported install options
are summarized by Table 4.2:

Table 4.2: AMD Display Driver Install Options

Install Option

Description

Install Loca-
tion

Location on disk to store driver files.

Install Type

The breadth of components to be installed. Refer to Table 4.3 for details.

Factory Reset

A Factory Reset will remove all prior versions of AMD HIP SDK and drivers. You will

(Optional) not be able to roll back to previously installed drivers.
Table 4.3: AMD Display Driver Install Types
Install Description
Type
Full In- | Provides all AMD Software features and controls for gaming, recording, streaming, and tweak-
stall ing the performance on your graphics hardware.
Minimal | Provides only the basic controls for AMD Software features and does not include advanced
Install features such as performance tweaking or recording and capturing content.
Driver Provides no user interface for AMD Software features.
Only

Note: You must perform a system restart for a complete installation of the Display Driver.

4.2.4 Installing Components

Please wait for the installation to complete during as shown in Fig. 4.7.

56

Chapter 4. Quick Start (Windows)

ROCm Documentation, Release 5.7.1

&\ AMD HIP SDK Installer

AMD -
HIP SOK

Part of the ROCm Open Software Platform

\

Click to learn more about AMD HIP SDK.

__—

i Your display may flicker during install. Time remaining: 06:21 2%

Fig. 4.7: Installation Progress

4.2. HIP SDK Installation 57

ROCm Documentation, Release 5.7.1

4.2.5 Installation Complete

Once the installation is complete, the installer window may prompt you for a system restart. Click Restart
at the lower right corner, shown in Fig. 4.8

&\ AMD HIP SDK Installer
-

'\

Stay up to date on the latest news from AMD HIP SDK: Sign up to our newsletter

v AMD HIP SDK and Drivers was installed successfully.

Fig. 4.8: Installation Complete

Error: Should the installer terminate due to unexpcted circumstances, or the user forcibly terminates the
installer, the temporary directory created under C:\AMD may be safely removed. Installed components
will not depend on this folder (unless the user specifies C:\AMD as an install folder explicitly).

4.3 Uninstallation

All components, except visual studio plug-in should be uninstalled through control panel ->
Add/Remove Program. For visual studio extension uninstallation, please refer to https://github.com/
ROCm-Developer-Tools/HIP-VS/blob/master/README.md. Uninstallation of the HIP SDK components
can be done through the Windows Settings app. Navigate to “Apps > Installed apps”, click the “..” on the
far right next to the component to uninstall, and click “Uninstall”.

58 Chapter 4. Quick Start (Windows)

https://github.com/ROCm-Developer-Tools/HIP-VS/blob/master/README.md
https://github.com/ROCm-Developer-Tools/HIP-VS/blob/master/README.md

ROCm Documentation, Release 5.7.1

Settings

User Apps > Installed apps

Local Account

o HIP SDK Core
. . 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023
Find a setting

HIP SDK Libraries Development
System 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Bluetooth & devices
HIP SDK Libraries Runtime

Network & internet 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

P lizati
ersonaiization HIP SDK Ray Tracing Development

5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Apps

Accounts HIP SDK Ray Tracing Runtime
5.5.0 | Advanced Micro Devices, Inc. | €/27/2023

Time & language

HIP SDK Runtime Compiler Development

Gaming - -
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Accessibility

) ‘ HIP SDK Runtime Compiler Runtime
Privacy & security 5.5.0 | Advanced Micro Devices, Inc. | 6/2

Windows Update
HIP SDK Visual Studio 2022 Plugin
5.5.0 | Advanced Micro Devices, Inc. | 6/2

Fig. 4.9: Removing the SDK via the Setting app

4.3. Uninstallation 59

ROCm Documentation, Release 5.7.1

&« Settings

. User

[J Local Account

Find a setting

B System

a Bluetooth & devices
¥ Network & internet
/ Personalization

& Apps
: Accounts

1’ Time & language
#8 Gaming

K Accessibility

W) Privacy & security

@ Windows Update

Apps > Installed apps

Bl

Bl

Bl

Bl

Bl

Bl

Bl

HIP SDK Core
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

HIP SDK Libraries Development
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

HIP SDK Libraries Runtime
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

HIP SDK Ray Tracing Development
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

HIP SDK Ray Tracing Runtime
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

HIP SDK Runtime Compiler Development
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

HIP SDK Runtime Compiler Runtime
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

HIP SDK Visual Studio 2022 Plugin
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

572 MB

243 MB

290GB

56.0 KB

66.5 MB

68.0 KB

102 MB

820 KB

Fig. 4.10: Removing the SDK via the Setting app

60

Chapter 4. Quick Start (Windows)

CHAPTER

FIVE

INSTALL ROCM (HIP SDK) ON WINDOWS

Start with Quick Start (Windows) or follow the detailed instructions below.

5.1 Prepare to Install

Prerequisites The prerequisites page lists the required steps to verify that the system supports ROCm.

5.2 Choose your install method

Graphical Installation Use the graphical front-end of the installer.

Command Line Installation Use the command line front-end of the installer.

5.3 Post Installation

ROCm-Examples Learn how to use ROCm with descriptive examples for novice to intermediate users.

Windows App Deployment Guidelines Discusses strategies on how to bundle HIP libraries
with an end user application.

5.4 See Also

e GPU Support and OS Compatibility (Linux)

61

ROCm Documentation, Release 5.7.1

5.5 Installation Prerequisites (Windows)

You must perform the following steps before installing ROCm and check if the system meets all the require-
ments to proceed with the installation.

5.5.1 Confirm the System Is Supported

The ROCm installation is supported only on specific host architectures, Windows Editions and update
versions.

5.5.1.1 Check the Windows Editions and Update Version on Your System

This section discusses obtaining information about the host architecture, Windows Edition and update
version.

5.5.1.1.1 Command Line Check

Verify the Windows Edition using the following steps:

1. To obtain the Linux distribution information, type the following command on your system from a
PowerShell Command Line Interface (CLI):

Get-ComputerInfo | Format-Table CsSystemType,OSName,OSDisplay Version

2. Confirm that the obtained information matches with those listed in Supported SKUs.

Example: Running the command above on a Windows system may result in the following output:

CsSystemType OsName OSDisplay Version

x64-based PC Microsoft Windows 11 Pro 22H2

5.5.1.1.2 Graphical Check

1. Open the Setting app.

O

Settings

Fig. 5.1: Windows Settings app icon

2. Navigate to System > About.
3. Confirm that the obtained information matches with those listed in Supported SKUs.

62 Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

0

Settings

Fig. 5.2: Windows Settings app icon

Settings

User System > About

Local Account

WinDev2306Eval
Find a setting 3 Virtual Machine

Rename this PC

L System ® Device specifications
Bluetooth & devices
Device name Win
Network & internet Processor AMD N 8 S with Radeon Graphics
Installed RAM

Device ID

Personalization

Apps Product ID

System type

Accounts . . .
Penand touch No pen or touch input is ilable for thi

Time & language
Related links Domain or workgroup ~ System protection Advanced system settings
Gaming

Accessibility Windows specifications Copy

Privacy & security

Edition Windows 11 Enterprise Evaluation
Windows Update VRS
Installed on
OS5 build
Experience
Microsoft Services Agreement
Microsoft Software License Terms

Fig. 5.3: Settings > About page

5.5. Installation Prerequisites (Windows) 63

ROCm Documentation, Release 5.7.1

& Settings a d >
C System > About
@ Local Account
WinDevZSQﬁEval Rename this PC
Find a setting Q Virtual Machine
| @ System () Device specifications Copy -~

g Bluetooth & devices

Device name WinDev2306Eval
@ Network & internet Processor AMD Ryzen 7 6800HS with Radeon Graphics 319GHz

Installed RAM 8.00 GB (2.69 GB usable)
/ Personalization i

Device ID B22AB5BD-9BC7-4410-9CFE-6711C34777A2
B Apps Product ID 00329-20000-00001-AA106

System type 64-bit operating system, x64-based processor
® Accounts
— Pen and touch ~ No pen or touch input is available for this display
:’ Time & language

Related links Domain or workgroup ~ System protection ~ Advanced system settings

8 Gaming
K Accessibility == Windows specifications Copy ~
\D Privacy & security

Edition Windows 11 Enterprise Evaluation
@ Windows Update Version 22H2

Installed on 6/29/2023

OS build 226211848

Experience Windows Feature Experience Pack 1000.22642.1000.0

Microsoft Services Agreement
Microsoft Software License Terms

Fig. 5.4: Settings > About page

64 Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

5.6 Graphical Installation

Install How to install ROCm?
Upgrade Instructions for upgrading an existing ROCm installation.

Uninstall Steps for removing ROCm packages and libraries.

5.6.1 See Also

e GPU Support and OS Compatibility (Linux)

5.6.2 Installation Using the Graphical Interface

The steps to install the HIP SDK for Windows are described in this document.

5.6.2.1 System Requirements

The HIP SDK is supported on Windows 10 and 11. The HIP SDK may be installed on a system without
AMD GPUs to use the build toolchains. To run HIP applications, a compatible GPU is required. Please see
the supported GPU guide for more details.

5.6.2.2 HIP SDK Installation

5.6.2.2.1 Download the installer

Download the installer from the HIP-SDK download page.

5.6.2.2.2 Launching the installer

To launch the AMD HIP SDK Installer, click the Setup icon shown in Fig. 4.1.

m,

Setup

Fig. 5.5: Setup Icon

The installer requires Administrator Privileges, so you may be greeted with a User Access Control (UAC)
pop-up. Click Yes.

5.6. Graphical Installation 65

https://www.amd.com/en/developer/rocm-hub/hip-sdk.html

ROCm Documentation, Release 5.7.1

User Account Control

Do you want to allow this app to make
changes to your device?

AMD Software: Adrenalin Edition

Verified publisher: Advanced Micro Devices, Inc
File origin: Hard drive on this computer

Show more details

Fig. 5.6: User Access Control pop-up

66 Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

User Account Control

Do you want to allow this app to make
changes to your device?

‘l AMD Software: Adrenalin Edition

Verified publisher: Advanced Micro Devices, Inc
File origin: Hard drive on this computer

Show more details

-)

Fig. 5.7: User Access Control pop-up

. e e

S

AMD¢ o

Software _

[

g

Initializing Install

Fig. 5.8: Installer initialization window

5.6. Graphical Installation 67

ROCm Documentation, Release 5.7.1

The installer executable will temporarily extract installer packages to C:\AMD which it will remove after
installation completes. This extraction is signified by the “Initializing install” window in Fig. 4.4.

The installer will then detect your system configuration as per Fig. 4.5 to decide, which installable components
are applicable to your system.

&\ AMD HIP SDK Installer

AMD
HIP SDK

Detectir stern con ion for driver an 2 Cancel

Fig. 5.9: Installer initialization window.

5.6.2.2.3 Customizing the install

When the installer launches, it displays a window that lets the user customize the installation. By default,
all components are selected for installation. Refer to Fig. 4.6 for an instance when the Select All option is
turned on.

5.6.2.2.3.1 HIP SDK Installer

The HIP SDK installation options are listed in Table 4.1.

68 Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

&\ AMD HIP SDK Installer

T - A

N

AMD HIP SDK = o . : DeSelect All

—

HIP SDK Core

HIP Libraries

HIP Runtime Compiler

Cancel

Fig. 5.10: Installer initialization window.

5.6. Graphical Installation 69

ROCm Documentation, Release 5.7.1

Table 5.1: HIP SDK Components for Installation

HIP Components

Install Type

Additional Options

HIP SDK Core

5.5.0

Install location

HIP Libraries

Full, Partial, None

Runtime, Development

Libs and headers)

HIP Runtime Compiler

Full, Partial, None

Runtime, Development

(
(

Headers)

HIP Ray Tracing

Full, Partial, None

Runtime, Development (Headers)

Visual Studio Plugin

Full, Partial, None

Visual Studio 2017, 2019, 2022 Plugin

Note:

the bundled AMD Display Driver, manually select the install type.

The Select/DeSelect All option only applies to the installation of HIP SDK components. To install

Tip: Should you only wish to install a few select components, DeSelecting All and then picking the individual

components may be more convenient.

5.6.2.2.3.2 AMD Display Driver

The HIP SDK installer bundles an AMD Radeon Software PRO 23.10 installer. The supported install options

are summarized by Table 4.2:

Table 5.2: AMD Display Driver Install Options

Install Option

Description

Install
tion

Loca-

Location on disk to store driver files.

Install Type

The breadth of components to be installed. Refer to Table 4.3 for details.

Factory Reset | A Factory Reset will remove all prior versions of AMD HIP SDK and drivers. You will
(Optional) not be able to roll back to previously installed drivers.
Table 5.3: AMD Display Driver Install Types
Install Description
Type
Full In- | Provides all AMD Software features and controls for gaming, recording, streaming, and tweak-
stall ing the performance on your graphics hardware.
Minimal | Provides only the basic controls for AMD Software features and does not include advanced
Install features such as performance tweaking or recording and capturing content.
Driver Provides no user interface for AMD Software features.
Only
Note: You must perform a system restart for a complete installation of the Display Driver.

70

Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

5.6.2.2.4 Installing Components

Please wait for the installation to complete during as shown in Fig. 4.7.

&\ AMD HIP SDK Installer

AMDAl
HIP SDK

Part of the ROCm Open Software Platform

=

Click to learn more about AMD HIP SDK.

Ja—

i Your display may flicker during install. Time remaining: 06:21 2%

Fig. 5.11: Installation Progress

5.6.2.2.5 Installation Complete

Once the installation is complete, the installer window may prompt you for a system restart. Click Restart
at the lower right corner, shown in Fig. 4.8

Error: Should the installer terminate due to unexpcted circumstances, or the user forcibly terminates the
installer, the temporary directory created under C:\AMD may be safely removed. Installed components
will not depend on this folder (unless the user specifies C:\AMD as an install folder explicitly).

5.6. Graphical Installation 71

ROCm Documentation, Release 5.7.1

&\ AMD HIP SDK Installer
-

\

Stay up to date on the latest news from AMD HIP SDK: Sign up to our newsletter

v AMD HIP SDK and Drivers was installed successfully.

Fig. 5.12: Installation Complete

72 Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

5.6.3 Upgrading Using the Graphical Interface

The steps to upgrade an existing HIP SDK installation for Windows are described in this document.

5.6.4 Uninstallation Using the Graphical Interface

The steps to uninstall the HIP SDK for Windows are described in this document.

5.6.4.1 Uninstallation

All components, except visual studio plug-in should be uninstalled through control panel ->
Add/Remove Program. For visual studio extension uninstallation, please refer to https://github.com/
ROCm-Developer-Tools/HIP-VS/blob/master/README.md. Uninstallation of the HIP SDK components
can be done through the Windows Settings app. Navigate to “Apps > Installed apps”, click the “..” on the
far right next to the component to uninstall, and click “Uninstall”.

Settings

User Apps > Installed apps

Local Account

a HIPSDK Core
. . 55.0 | Advanced Micro Devices, Inc. | 6/27/2023
Find a setting

. HIP SDK Libraries Development
B system 55.0 | Advanced Micro Devices, Inc. | 6/27/2023

Bluetooth & devices
HIP SDK Libraries Runtime

Network & internet 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

P lizati
ersonaization HIP SDK Ray Tracing Development

5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023
Apps

Accounts HIP SDK Ray Tracing Runtime
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Time & language

HIP SDK Runtime Compiler Development

Gaming - - o
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Accessibility

: ‘ HIP SDK Runtime Compiler Runtime
Privacy & security 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Windows Update
HIP SDK Visual Studio 2022 Plugin
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Fig. 5.13: Removing the SDK via the Setting app

5.6. Graphical Installation 73

https://github.com/ROCm-Developer-Tools/HIP-VS/blob/master/README.md
https://github.com/ROCm-Developer-Tools/HIP-VS/blob/master/README.md

ROCm Documentation, Release 5.7.1

&« Settings - o X
O U Apps > Installed apps
@ Local Account
HIP SDK Core
P |
.) 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023 U il
Find a setting Q
HIP SDK Libraries Development
P |
B System 55.0 | Advanced Micro Devices, Inc. | 6/27/2023 2hdllfE
a Bluetooth & devices
HIP SDK Libraries Runtime 290GB -
@ Network & internet 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023 '
/ Personalization .
HIP SDK Ray Tracing Development S60KB
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023 ’
| BE Apps
® . .
Accounts HIP SDK Ray Ti Runt
- = y Tracing Runtime
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023 665 M8
‘L’ Time & language
¥ i HIP SDK Runtime Compiler Development
£& Gamin bu | B P
£ 5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023 680 KE
K Accessibility
HIP SDK Runtime Compiler Runtime
5 : u | e
J Privacy & security 550 | Advanced Micro Devices, Inc. | 6/27/2023 el
@ Windows Update
HIP SDK Visual Studio 2022 Plugin 820KB
5.5.0 | Advanced Micro Devices, Inc. | 6/27/2023

Fig. 5.14: Removing the SDK via the Setting app

74 Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

5.7 Command Line Installation

Install How to install ROCm?

Upgrade Instructions for upgrading an existing ROCm installation.

Uninstall Steps for removing ROCm packages and libraries.

5.7.1 See Also

e GPU Support and OS Compatibility (Linux)

5.7.2 Installation Using the Command Line Interface

The steps to install the HIP SDK for Windows are described in this document.

5.7.2.1 System Requirements

The HIP SDK is supported on Windows 10 and 11. The HIP SDK may be installed on a system without
AMD GPUs to use the build toolchains. To run HIP applications, a compatible GPU is required. Please see
the supported GPU guide for more details.

5.7.2.2 HIP SDK Installation

The command line installer is the same executable which is used by the graphical front-end. Download
the installer from the HIP-SDK download page. The options supported by the command line interface are
summarized in Table 5.5.

Table 5.4: HIP SDK Command Line Options

Install Option

Description

-install

Command used to install packages, both driver and applications. No output to the
screen.

-install -boot

Silent install with auto reboot.

-install -log | Write install result code to the specified log file. The specified log file must be on a
<absolute local machine. Double quotes are needed if there are spaces in the log file path.
path>

-uninstall Command to uninstall all packages installed by this installer on the system. There is

no option to specify which packages to uninstall.

-uninstall -boot

Silent uninstall with auto reboot.

/7 or /help

Shows a brief description of all switch commands.

Note: Unlike the graphical installer, the command line interface doesn’t support selectively installing parts
of the SDK bundle. It’s all or nothing.

5.7. Command Line Installation 75

https://www.amd.com/en/developer/rocm-hub/hip-sdk.html

ROCm Documentation, Release 5.7.1

5.7.2.2.1 Launching the Installer From the Command Line

The installer is still a graphical application with a WinMain entry point, even when called on the command
line. This means that the application lifetime is tied to a window, even on headless systems where that
window may not be visible. To launch the installer from PowerShell that will block until the installer exits,
one may use the following pattern:

Start-Process $InstallerExecutable -ArgumentList $InstallerArgs -NoNewWindow -Wait

Important: Running the installer requires Administrator Privileges.

For example, installing all components and

Start-Process ~\Downloads\Setup.exe -ArgumentList -install','-log',”${env:USERPROFILE}\installer log.txt” -
—NoNewWindow -Wait

5.7.3 Upgrading Using the Graphical Interface

The steps to uninstall the HIP SDK for Windows are described in this document.

5.7.3.1 HIP SDK Upgrade
To upgrade an existing installation of the HIP SDK without preserving the previous version, first uninstall it,

then install the new version following the instructions in Uninstallation Using the Command Line Interface
and Installation Using the Command Line Interface using the old and new installers respectively.

To upgrade by installing both versions side-by-side, just run the installer of the newer version.

5.7.4 Uninstallation Using the Command Line Interface

The steps to uninstall the HIP SDK for Windows are described in this document.

5.7.4.1 HIP SDK Uninstallation

The command line installer is the same executable which is used by the graphical front-end. The options
supported by the command line interface are summarized in Table 5.5.

Table 5.5: HIP SDK Command Line Options

Install Option Description

-install Command used to install packages, both driver and applications. No output to the
screen.

-install -boot Silent install with auto reboot.

-install -log | Write install result code to the specified log file. The specified log file must be on a

<absolute local machine. Double quotes are needed if there are spaces in the log file path.

path>

-uninstall Command to uninstall all packages installed by this installer on the system. There is
no option to specify which packages to uninstall.

-uninstall -boot | Silent uninstall with auto reboot.

/7 or /help Shows a brief description of all switch commands.

76 Chapter 5. Install ROCm (HIP SDK) on Windows

ROCm Documentation, Release 5.7.1

Note: Unlike the graphical installer, the command line interface doesn’t support selectively installing parts
of the SDK bundle. It’s all or nothing.

5.7.4.1.1 Launching the Installer From the Command Line

The installer is still a graphical application with a WinMain entry point, even when called on the command
line. This means that the application lifetime is tied to a window, even on headless systems where that
window may not be visible. To launch the installer from PowerShell that will block until the installer exits,
one may use the following pattern:

Start-Process $Installerfixecutable -ArgumentList $Installer Args -NoNewWindow -Wait

Important: Running the installer requires Administrator Privileges.

For example, uninstalling all components and

Start-Process ~\Downloads\Setup.exe -ArgumentList -uninstall' -NoNewWindow -Wait

5.7. Command Line Installation 77

ROCm Documentation, Release 5.7.1

78 Chapter 5. Install ROCm (HIP SDK) on Windows

CHAPTER

SIX

DEPLOY ROCM DOCKER CONTAINERS

6.1 Prerequisites

Docker containers share the kernel with the host operating system, therefore the ROCm kernel-mode driver
must be installed on the host. Please refer to using-the-package-manager on installing amdgpu-dkms. The
other user-space parts (like the HIP-runtime or math libraries) of the ROCm stack will be loaded from the
container image and don’t need to be installed to the host.

6.2 Accessing GPUs in containers

In order to access GPUs in a container (to run applications using HIP, OpenCL or OpenMP offloading)
explicit access to the GPUs must be granted.

The ROCm runtimes make use of multiple device files:
o /dev/kfd: the main compute interface shared by all GPUs

e /dev/dri/renderD<node>: direct rendering interface (DRI) devices for each GPU. <node> is a number
for each card in the system starting from 128.

Exposing these devices to a container is done by using the --device option, i.e. to allow access to all GPUs
expose /dev/kfd and all /dev/dri/renderD devices:

docker run --device /dev/kfd --device /dev/renderD128 --device /dev/renderD129 ...

More conveniently, instead of listing all devices, the entire /dev/dri folder can be exposed to the new
container:

docker run --device /dev/kfd --device /dev/dri

Note that this gives more access than strictly required, as it also exposes the other device files found in that
folder to the container.

79

https://docs.docker.com/engine/reference/commandline/run/#device

ROCm Documentation, Release 5.7.1

6.2.1 Restricting a container to a subset of the GPUs

If a /dev/dri/renderD device is not exposed to a container then it cannot use the GPU associated with it;
this allows to restrict a container to any subset of devices.

For example to allow the container to access the first and third GPU start it like:

docker run --device /dev/kfd --device /dev/dri/renderD128 --device /dev/dri/renderD130 <image>

6.2.2 Additional Options

The performance of an application can vary depending on the assignment of GPUs and CPUs to the task.
Typically, numactl! is installed as part of many HPC applications to provide GPU/CPU mappings. This
Docker runtime option supports memory mapping and can improve performance.

--security-opt seccomp=unconfined

This option is recommended for Docker Containers running HPC applications.

docker run --device /dev/kfd --device /dev/dri --security-opt seccomp=unconfined ...

6.3 Docker images in the ROCm ecosystem

6.3.1 Base images

https://github.com/RadeonOpenCompute/ROCm-docker hosts images useful for users wishing to build their
own containers leveraging ROCm. The built images are available from Docker Hub. In particular rocm/
rocm-terminal is a small image with the prerequisites to build HIP applications, but does not include any
libraries.

6.3.2 Applications

AMD provides pre-built images for various GPU-ready applications through its Infinity Hub at https://www.
amd.com/en/technologies/infinity-hub. Examples for invoking each application and suggested parameters
used for benchmarking are also provided there.

80 Chapter 6. Deploy ROCm Docker containers

https://github.com/RadeonOpenCompute/ROCm-docker
https://hub.docker.com/u/rocm
https://www.amd.com/en/technologies/infinity-hub
https://www.amd.com/en/technologies/infinity-hub

CHAPTER

SEVEN

RELEASE NOTES

The release notes for the ROCm platform.

7.1 ROCm 5.7.1

7.1.1 What’s New in This Release
7.1.2 ROCm Libraries

7.1.2.1 rocBLAS

A new functionality rocblas-gemm-tune and an environment variable
ROCBLAS TENSILE GEMM_ OVERRIDE PATH are added to rocBLAS in the ROCm 5.7.1 re-
lease.

rocblas-gemm-tune is used to find the best-performing GEMM kernel for each GEMM problem set. It has
a command line interface, which mimics the —yaml input used by rocblas-bench. To generate the expected
—yaml input, profile logging can be used, by setting the environment variable ROCBLAS_LAYERA4.

For more information on rocBLAS logging, see Logging in rocBLAS, in the API Reference Guide.

An example input file: Expected output (note selected GEMM idx may differ): Where the far
right values (solution_index) are the indices of the best-performing kernels for those GEMMs in
the rocBLAS kernel library. These indices can be directly used in future GEMM calls. See
rocBLAS/samples/example_user_ driven_tuning.cpp for sample code of directly using kernels via their in-
dices.

If the output is stored in a file, the results can be used to override default kernel selection with the kernels
found, by setting the environment variable ROCBLAS_TENSILE GEMM__OVERRIDE_PATH, where
points to the stored file.

For more details, refer to the rocBLAS Programmer’s Guide.

81

https://rocm.docs.amd.com/projects/rocBLAS/en/docs-5.7.1/API_Reference_Guide.html#logging-in-rocblas
https://rocm.docs.amd.com/projects/rocBLAS/en/latest/Programmers_Guide.html#rocblas-gemm-tune

ROCm Documentation, Release 5.7.1

7.1.2.2 HIP 5.7.1 (for ROCm 5.7.1)

ROCm 5.7.1 is a point release with several bug fixes in the HIP runtime.

7.1.3 Fixed defects

The hipPointerGetAttributes API returns the correct HIP memory type as hipMemoryTypeManaged for

managed memory.

7.1.4 Library Changes in ROCM 5.7.1

7.1.4.1 hipSOLVER 1.8.2

hipSOLVER 1.8.2 for ROCm 5.7.1

7.1.4.1.1 Fixed

Library Version
hipBLAS 1.1.0
hipCUB 2.13.1
hipFFT 1.0.12
hipSOLVER 1.8.1 1.8.2
hipSPARSE 2.3.8
MIOpen 2.19.0
rocALUTION | 2.1.11
rocBLAS 3.1.0
rocFFT 1.0.24
rocm-cmake 0.10.0
rocPRIM 2.13.1
rocRAND 2.10.17
rocSOLVER 3.23.0
rocSPARSE 2.5.4
rocThrust 2.18.0
rocWMMA 1.2.0
Tensile 4.38.0

e Fixed conflicts between the hipsolver-dev and -asan packages by excluding hipsolver module.f90 from

the latter

82

Chapter 7. Release Notes

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.7.1
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.7.1

CHAPTER

EIGHT

CHANGELOG

The changelog for the ROCm platform.

8.1 ROCm 5.7.1

8.1.1 What’s New in This Release
8.1.2 ROCm Libraries

8.1.2.1 rocBLAS

A new functionality rocblas-gemm-tune and an environment variable
ROCBLAS_TENSILE _GEMM__OVERRIDE_PATH are added to rocBLAS in the ROCm 5.7.1 re-
lease.

rocblas-gemm-tune is used to find the best-performing GEMM kernel for each GEMM problem set. It has
a command line interface, which mimics the —yaml input used by rocblas-bench. To generate the expected
—yaml input, profile logging can be used, by setting the environment variable ROCBLAS_LAYERA4.

For more information on rocBLAS logging, see Logging in rocBLAS, in the API Reference Guide.

An example input file: Expected output (note selected GEMM idx may differ): Where the far
right values (solution_index) are the indices of the best-performing kernels for those GEMMs in
the rocBLAS kernel library. These indices can be directly used in future GEMM calls. See
rocBLAS/samples/example__user__driven_ tuning.cpp for sample code of directly using kernels via their in-
dices.

If the output is stored in a file, the results can be used to override default kernel selection with the kernels
found, by setting the environment variable ROCBLAS_TENSILE GEMM_OVERRIDE PATH, where
points to the stored file.

For more details, refer to the rocBLAS Programmer’s Guide.

83

https://rocm.docs.amd.com/projects/rocBLAS/en/docs-5.7.1/API_Reference_Guide.html#logging-in-rocblas
https://rocm.docs.amd.com/projects/rocBLAS/en/latest/Programmers_Guide.html#rocblas-gemm-tune

ROCm Documentation, Release 5.7.1

8.1.2.2 HIP 5.7.1 (for ROCm 5.7.1)

ROCm 5.7.1 is a point release with several bug fixes in the HIP runtime.

8.1.3 Fixed defects

The hipPointerGetAttributes API returns the correct HIP memory type as hipMemoryTypeManaged for

managed memory.

8.1.4 Library Changes in ROCM 5.7.1

8.1.4.1 hipSOLVER 1.8.2

hipSOLVER 1.8.2 for ROCm 5.7.1

8.1.4.1.1 Fixed

Library Version
hipBLAS 1.1.0
hipCUB 2.13.1
hipFFT 1.0.12
hipSOLVER 1.8.1 1.8.2
hipSPARSE 2.3.8
MIOpen 2.19.0
rocALUTION | 2.1.11
rocBLAS 3.1.0
rocFFT 1.0.24
rocm-cmake 0.10.0
rocPRIM 2.13.1
rocRAND 2.10.17
rocSOLVER 3.23.0
rocSPARSE 2.5.4
rocThrust 2.18.0
rocWMMA 1.2.0
Tensile 4.38.0

e Fixed conflicts between the hipsolver-dev and -asan packages by excluding hipsolver module.f90 from

the latter

84

Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.7.1
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.7.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.7.1

ROCm Documentation, Release 5.7.1

8.2 ROCm 5.7.0

8.2.1 Release Highlights for ROCm 5.7

ROCm 5.7.0 includes many new features. These include: a new library (hipTensor), and optimizations for
rocRAND and MIVisionX. Address sanitizer for host and device code (GPU) is now available as a beta.
Note that ROCm 5.7.0 is EOS for MI50. 5.7 versions of ROCm are the last major release in the ROCm 5
series. This release is Linux-only.

Important: The next major ROCm release (ROCm 6.0) will not be backward compatible with the ROCm
5 series. Changes will include: splitting LLVM packages into more manageable sizes, changes to the HIP
runtime API, splitting rocRAND and hipRAND into separate packages, and reorganizing our file structure.

8.2.1.1 AMD Instinct™ MI50 End of Support Notice
AMD Instinct MI50, Radeon Pro VII, and Radeon VII products (collectively gfx906 GPUs) will enter
maintenance mode starting Q3 2023.
As outlined in 5.6.0, ROCm 5.7 will be the final release for gfx906 GPUs to be in a fully supported state.
¢ ROCm 6.0 release will show MI50s as “under maintenance” mode for Linux and Windows

e No new features and performance optimizations will be supported for the gfx906 GPUs beyond this
major release (ROCm 5.7).

o Bug fixes / critical security patches will continue to be supported for the gfx906 GPUs till Q2 2024
(EOM (End of Maintenance) will be aligned with the closest ROCm release).

e Bug fixes during the maintenance will be made to the next ROCm point release.
o Bug fixes will not be backported to older ROCm releases for gfx906.

o Distro / Operating system updates will continue as per the ROCm release cadence for gfx906 GPUs
till EOM.

8.2.1.2 Feature Updates

8.2.1.2.1 Non-hostcall HIP Printf

Current behavior

The current version of HIP printf relies on hostcalls, which, in turn, rely on PCle atomics. However,
PCle atomics are unavailable in some environments, and, as a result, HIP-printf does not work in those
environments. Users may see the following error from runtime (with AMD_ LOG_LEVEL 1 and above),

Pcie atomics not enabled, hostcall not supported

Workaround

The ROCm 5.7 release introduces an alternative to the current hostcall-based implementation that leverages
an older OpenCL-based printf scheme, which does not rely on hostcalls/PCle atomics. Note: This option is
less robust than hostcall-based implementation and is intended to be a workaround when hostcalls do not
work.

The printf variant is now controlled via a new compiler option -mprintf-kind=. This is supported only for
HIP programs and takes the following values,

8.2. ROCm 5.7.0 85

https://rocm.docs.amd.com/en/docs-5.6.0/release.html

ROCm Documentation, Release 5.7.1

e “hostcall” — This currently available implementation relies on hostcalls, which require the system to
support PCle atomics. It is the default scheme.

e “buffered” — This implementation leverages the older printf scheme used by OpenCL; it relies on a
memory buffer where printf arguments are stored during the kernel execution, and then the runtime
handles the actual printing once the kernel finishes execution.

NOTE: With the new workaround,

e The printf buffer is fixed size and non-circular. After the buffer is filled, calls to printf will not result
in additional output.

o The printf call returns either 0 (on success) or -1 (on failure, due to full buffer), unlike the hostcall
scheme that returns the number of characters printed.

8.2.1.2.2 Beta Release of LLVM Address Sanitizer (ASAN) with the GPU

The ROCm v5.7 release introduces the beta release of LLVM Address Sanitizer (ASAN) with the GPU. The
LLVM Address Sanitizer provides a process that allows developers to detect runtime addressing errors in
applications and libraries. The detection is achieved using a combination of compiler-added instrumentation
and runtime techniques, including function interception and replacement. Until now, the LLVM Address
Sanitizer process was only available for traditional purely CPU applications. However, ROCm has extended
this mechanism to additionally allow the detection of some addressing errors on the GPU in heterogeneous
applications. Ideally, developers should treat heterogeneous HIP and OpenMP applications like pure CPU
applications. However, this simplicity has not been achieved yet.

Refer to the documentation on LLVM Address Sanitizer with the GPU at LLVM Address Sanitizer User
Guide.

Note: The beta release of LLVM Address Sanitizer for ROCm is currently tested and validated on Ubuntu
20.04.

8.2.1.3 Fixed Defects

The following defects are fixed in ROCm v5.7,
e Test hangs observed in HMM RCCL
e NoGpuTst test of Catch2 fails with Docker
o Failures observed with non-HMM HIP directed catch2 tests with XNACK+
o Multiple test failures and test hangs observed in hip-directed catch2 tests with xnack+

8.2.1.4 HIP 5.7.0

8.2.1.4.1 Optimizations
8.2.1.4.2 Added

o Added meta_ group_size/rank for getting the number of tiles and rank of a tile in the partition
e Added new APIs supporting Windows only, under development on Linux

— hipMallocMipmappedArray for allocating a mipmapped array on the device

— hipFreeMipmappedArray for freeing a mipmapped array on the device

86 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

hipGetMipmappedArrayLevel for getting a mipmap level of a HIP mipmapped array

hipMipmappedArrayCreate for creating a mipmapped array

hipMipmappedArrayDestroy for destroy a mipmapped array

hipMipmappedArrayGetLevel for getting a mipmapped array on a mipmapped level

8.2.1.4.3 Changed

8.2.1.4.4 Fixed

8.2.1.4.5 Known Issues

8.2.1.4.6 Upcoming changes for HIP in ROCm 6.0 release

e HIP memory type enum values currently don’t support equivalent value to cudaMemoryTypeUnregis-

tered, due to HIP functionality backward compatibility.

« HIP API hipPointerGet Attributes could return invalid value in case the input memory pointer was not

allocated through any HIP API on device or host.

¢ Removal of genarch from hipDeviceProp_ t structure

e Addition of new fields in hipDeviceProp_ t structure

« Removal of deprecated code -hip-hce codes from hip code tree

maxTexturelD
maxTexture2D
maxTexturelDLayered
maxTexture2DLayered
sharedMemPerMultiprocessor
deviceOverlap
asyncEngineCount
surfaceAlignment

unified Addressing
computePreemptionSupported
hostRegisterSupported

uuid

e Correct hipArray usage in HIP APIs such as hipMemcpyAtoH and hipMemcpyHtoA

« HIPMEMCPY_ 3D fields correction to avoid truncation of “size_t” to “unsigned int” inside hipMem-
cpy3D()

¢ Renaming of ‘memoryType’ in hipPointerAttribute_t structure to ‘type’

e Correct hipGetLastError to return the last error instead of last API call’s return code

o Update hipExternalSemaphoreHandleDesc to add “unsigned int reserved[16]”

8.2.

ROCm 5.7.0

87

ROCm Documentation, Release 5.7.1

e Correct handling of flag values in hipIpcOpenMemHandle for hipIpcMemLazyEnablePeerAccess

o Remove hiparray* and make it opaque with hipArray_t

8.2.2 Library Changes in ROCM 5.7.0

Library Version
hipBLAS 0.54.0 1.1.0
hipCUB 2.13.1

hipFFT 1.0.12
hipSOLVER 1.8.0 1.8.1
hipSPARSE 2.3.7 2.3.8
MIOpen 2.19.0

rcel 2.15.5 2.17.1-1
rocALUTION | 2.1.9 2.1.11
rocBLAS 3.0.0 3.1.0
rocFFT 1.0.23 1.0.24
rocm-cmake 0.9.0 0.10.0
rocPRIM 2.13.0 2.13.1
rocRAND 2.10.17
rocSOLVER 3.22.0 3.23.0
rocSPARSE 2.5.2 254
rocThrust 2.18.0
rocWMMA 1.2.0

Tensile 4.37.0 4.38.0

8.2.2.1 hipBLAS 1.1.0

hipBLAS 1.1.0 for ROCm 5.7.0

8.2.2.1.1 Changed

e updated documentation requirements

8.2.2.1.2 Dependencies

e dependency rocSOLVER now depends on rocSPARSE

8.2.2.2 hipCUB 2.13.1

hipCUB 2.13.1 for ROCm 5.7.0

88

Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.7.0
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.7.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.7.0

ROCm Documentation, Release 5.7.1

8.2.2.2.1 Changed

¢ CUB backend references CUB and Thrust version 2.0.1.

e Fixed DeviceSegmentedReduce::ArgMin and DeviceSegmentedReduce::ArgMax by returning the
segment-relative index instead of the absolute one.

o Fixed DeviceSegmentedReduce::ArgMin for inputs where the segment minimum is smaller than the
value returned for empty segments. An equivalent fix is applied to DeviceSegmentedReduce:: ArgMax.

8.2.2.2.2 Known Issues

e debug_synchronous no longer works on CUDA platform. CUB_DEBUG_SYNC should be used to
enable those checks.

o DeviceReduce::Sum does not compile on CUDA platform for mixed extended-floating-point/floating-
point InputT and OutputT types.

o DeviceHistogram::HistogramEven fails on CUDA platform for [LevelT, SamplelteratorT] = [int, int].

« DeviceHistogram::MultiHistogramEven fails on CUDA platform for [LevelT, SamplelteratorT| = [int,
int /unsigned short/float/double] and [LevelT, SamplelteratorT] = [float, double].

8.2.2.3 hipFFT 1.0.12

hipFFT 1.0.12 for ROCm 5.7.0

8.2.2.3.1 Added

e Implemented the hipfftXtMakePlanMany, hipfftXtGetSizeMany, hipfitXtExec APIs, to allow request-
ing half-precision transforms.

8.2.2.3.2 Changed

o Added —precision argument to benchmark/test clients. —double is still accepted but is deprecated as a
method to request a double-precision transform.

8.2.2.4 hipSOLVER 1.8.1

hipSOLVER 1.8.1 for ROCm 5.7.0

8.2.2.4.1 Changed

e Changed hipsolver-test sparse input data search paths to be relative to the test executable

8.2. ROCm 5.7.0 89

ROCm Documentation, Release 5.7.1

8.2.2.5 hipSPARSE 2.3.8
hipSPARSE 2.3.8 for ROCm 5.7.0
8.2.2.5.1 Improved

e Fix compilation failures when using cusparse 12.1.0 backend
e Fix compilation failures when using cusparse 12.0.0 backend
o Fix compilation failures when using cusparse 10.1 (non-update versions) as backend

e Minor improvements

8.2.2.6 MIOpen 2.19.0
MIOpen 2.19.0 for ROCm 5.7.0
8.2.2.6.1 Added

e ROCm 5.5 support for gfx1101 (Navi32)

8.2.2.6.2 Changed

o Tuning results for MLIR on ROCm 5.5
e Bumping MLIR commit to 5.5.0 release tag

8.2.2.6.3 Fixed

e Fix 3d convolution Host API bug
o [HOTFIX][MI200][FP16] Disabled ConvHipImplicitGemmBwdXdlops when FP16_ALT is required.

8.2.2.7 RCCL 2.17.1-1
RCCL 2.17.1-1 for ROCm 5.7.0
8.2.2.7.1 Changed

o Compatibility with NCCL 2.17.1-1

e Performance tuning for some collective operations

90 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.2.2.7.2 Added

e Minor improvements to MSCCL codepath
« NCCL_NCHANNELS_ PER_PEER support
e Improved compilation performance

e Support for gfx94x

8.2.2.7.3 Fixed

 Potential race-condition during ncclSocketClose()

8.2.2.8 rocALUTION 2.1.11
rocALUTION 2.1.11 for ROCm 5.7.0
8.2.2.8.1 Added

e Added support for gfx940, gfx941 and gfx942

8.2.2.8.2 Improved
e Fixed OpenMP runtime issue with Windows toolchain
8.2.2.9 rocBLAS 3.1.0
rocBLAS 3.1.0 for ROCm 5.7.0
8.2.2.9.1 Added

o yaml lock step argument scanning for rocblas-bench and rocblas-test clients. See Programmers Guide
for details.

e rocblas-gemm-tune is used to find the best performing GEMM kernel for each of a given set of GEMM
problems.

8.2.2.9.2 Fixed

« make offset calculations for rocBLAS functions 64 bit safe. Fixes for very large leading dimensions or
increments potentially causing overflow:

Level 1: axpy, copy, rot, rotm, scal, swap, asum, dot, iamax, iamin, nrm2
— Level 2: gemv, symv, hemv, trmv, ger, syr, her, syr2, her2, trsv

— Level 3: gemm, symm, hemm, trmm, syrk, herk, syr2k, her2k, syrkx, herkx, trsm, trtri, dgmm,
geam

— General: set_ vector, get_ vector, set_ matrix, get_ matrix

8.2. ROCm 5.7.0 91

ROCm Documentation, Release 5.7.1

— Related fixes: internal scalar loads with > 32bit offsets

— fix in-place functionality for all trtri sizes

8.2.2.9.3 Changed

e dot when using rocblas_pointer _mode_host is now synchronous to match legacy BLAS as it stores
results in host memory

« enhanced reporting of installation issues caused by runtime libraries (Tensile)

o standardized internal rocblas C++ interface across most functions

8.2.2.9.4 Deprecated

¢ Removal of STDC WANT IEC 60559 TYPES EXT define in future release

8.2.2.9.5 Dependencies

« optional use of AOCL BLIS 4.0 on Linux for clients
e optional build tool only dependency on python psutil

8.2.2.10 rocFFT 1.0.24
rocFFT 1.0.24 for ROCm 5.7.0
8.2.2.10.1 Optimizations

o Improved performance of complex forward/inverse 1D FFTs (2049 <= length <= 131071) that use
Bluestein’s algorithm.

8.2.2.10.2 Added

o Implemented a solution map version converter and finish the first conversion from ver.0 to ver.1. Where
version 1 removes some incorrect kernels (sbre/sber using half 1ds)

8.2.2.10.3 Changed

o Moved rocfft_rtc_helper executable to lib/rocFFT directory on Linux.
o Moved library kernel cache to lib/rocFFT directory.

92 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.2.2.11 rocm-cmake 0.10.0

rocm-cmake 0.10.0 for ROCm 5.7.0

8.2.2.11.1 Added

e Added ROCMTest module
« ROCMCreatePackage: Added support for ASAN packages

8.2.2.12 rocPRIM 2.13.1

rocPRIM 2.13.1 for ROCm 5.7.0

8.2.2.12.1 Changed

e Deprecated configuration radix_sort_config for device-level radix sort as it no longer matches the
algorithm’s parameters. New configuration radix_ sort_ config_v2 is preferred instead.

e Removed erroneous implementation of device-level inclusive_scan and exclusive scan. The prior de-
fault implementation using lookback-scan now is the only available implementation.

e The benchmark metric indicating the bytes processed for exclusive scan_by key and inclu-
sive_scan_ by _key has been changed to incorporate the key type. Furthermore, the benchmark
log has been changed such that these algorithms are reported as scan and scan_ by_ key instead of
scan__exclusive and scan__inclusive.

e Deprecated configurations scan_config and scan_by_ key config for device-level scans, as
they no longer match the algorithm’s parameters. New configurations scan_config v2 and
scan_ by_key_ config v2 are preferred instead.

8.2.2.12.2 Fixed

 Fixed build issue caused by missing header in thread/thread_search.hpp.

8.2.2.13 rocRAND 2.10.17

rocRAND 2.10.17 for ROCm 5.7.0

8.2.2.13.1 Added

e MT19937 pseudo random number generator based on M. Matsumoto and T. Nishimura, 1998, Mersenne
Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator.

e New benchmark for the device API using Google Benchmark, benchmark rocrand_ device api,
replacing benchmark_rocrand_ kernel. benchmark_ rocrand_kernel is deprecated and will be
removed in a future wversion. Likewise, benchmark curand_host_api is added to replace
benchmark_ curand_generate and benchmark curand_device api is added to replace bench-
mark curand kernel.

o experimental HIP-CPU feature

8.2. ROCm 5.7.0 93

ROCm Documentation, Release 5.7.1

e ThreeFry pseudorandom number generator based on Salmon et al., 2011, “Parallel random numbers:
as easy as 1, 2, 3”.

8.2.2.13.2 Changed
e Python 2.7 is no longer officially supported.
8.2.2.14 rocSOLVER 3.23.0
rocSOLVER 3.23.0 for ROCm 5.7.0
8.2.2.14.1 Added

o LU factorization without pivoting for block tridiagonal matrices:
— GEBLTTRF_NPVT now supports interleaved_ batched format
e Linear system solver without pivoting for block tridiagonal matrices:

— GEBLTTRS__NPVT now supports interleaved_ batched format

8.2.2.14.2 Fixed

e Fixed stack overflow in sparse tests on Windows

8.2.2.14.3 Changed

e Changed rocsolver-test sparse input data search paths to be relative to the test executable
e Changed build scripts to default to compressed debug symbols in Debug builds
8.2.2.15 rocSPARSE 2.5.4

rocSPARSE 2.5.4 for ROCm 5.7.0

8.2.2.15.1 Added

o Added more mixed precisions for SpMV, (matrix: float, vectors: double, calculation: dou-
ble) and (matrix: rocsparse_float_complex, vectors: rocsparse_double_complex, calculation: roc-
sparse__double_ complex)

e Added support for gfx940, gfx941 and gfx942

94 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.2.2.15.2 Improved

e Fixed a bug in csrsm and bsrsm

8.2.2.15.3 Known Issues

In csritlu0, the algorithm rocsparse itilu0_alg sync_ split_ fusion has some accuracy issues to investigate
with XNACK enabled. The fallback is rocsparse_itilu0_alg sync_ split.

8.2.2.16 rocThrust 2.18.0

rocThrust 2.18.0 for ROCm 5.7.0

8.2.2.16.1 Fixed

e lower_bound, upper_bound, and binary_ search failed to compile for certain types.

e Fixed issue where transform_ iterator would not compile with _ device_ -only operators.

8.2.2.16.2 Changed

o Updated docs directory structure to match the standard of rocm-docs-core.

e Removed references to and workarounds for deprecated hce

8.2.2.17 rocWMMA 1.2.0

rocWMMA 1.2.0 for ROCm 5.7.0

8.2.2.17.1 Changed

e Fixed a bug with synchronization

o Updated rocWMMA cmake versioning

8.2.2.18 Tensile 4.38.0

Tensile 4.38.0 for ROCm 5.7.0

8.2. ROCm 5.7.0 95

https://github.com/RadeonOpenCompute/rocm-docs-core

ROCm Documentation, Release 5.7.1

8.2.2.18.1 Added

o Added support for FP16 Alt Round Near Zero Mode (this feature allows the generation of alternate

kernels with intermediate rounding instead of truncation)

e Added user-driven solution selection feature

8.2.2.18.2 Optimizations

e Enabled LocalSplitU with MFMA for I8 data type

e Optimized K mask code in mfmalter

Enabled TailLoop code in NoLoadLoop to prefetch global/local read

Enabled DirectToVgpr in TailLoop for NN, TN, and TT matrix orientations

e Optimized DirectToLds test cases to reduce the test duration

8.2.2.18.3 Changed

e« Removed DGEMM NT custom kernels and related test cases
e Changed noTailLoop logic to apply noTailL.oop only for NT
e Changed the range of AssertFreeOElementMultiple and Freel

o Unified aStr, bStr generation code in mfmalter

8.2.2.18.4 Fixed

e Fixed LocalSplitU mismatch issue for SGEMM
e Fixed BufferStore=0 and Ldc != Ldd case

e Fixed mismatch issue with TailLoop + MatrixInstB > 1

8.3 ROCm 5.6.1

8.3.1 What’s New in This Release

ROCm 5.6.1 is a point release with several bug fixes in the HIP runtime.

96

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.4 HIP 5.6.1 (for ROCm 5.6.1)

8.4.1 Fixed Defects

e hipMemcpy device-to-device (intra device) is now asynchronous with respect to the host

e Enabled xnack+ check in HIP catch2 tests hang when executing tests
o Memory leak when code object files are loaded /unloaded via hipModuleLoad/hipModuleUnload APIs

¢ Using hipGraphAddMemFreeNode no longer results in a crash

8.4.2 Library Changes in ROCM 5.6.1

8.4.2.1 hipSPARSE 2.3.7

hipSPARSE 2.3.7 for ROCm 5.6.1

8.4.2.1.1 Bugfix

Library Version
hipBLAS 0.53.0
hipCUB 2.13.1
hipFFT 1.0.12
hipSOLVER 1.8.0
hipSPARSE | 2.3.6 2.3.7
MIOpen 2.19.0
rcel 2.15.5
rocALUTION | 2.1.9
rocBLAS 3.0.0
rocFFT 1.0.23
rocm-cmake 0.9.0
rocPRIM 2.13.0
rocRAND 2.10.17
rocSOLVER 3.22.0
rocSPARSE 2.5.2
rocThrust 2.18.0
Tensile 4.37.0

e Reverted an undocumented API change in hipSPARSE 2.3.6 that affected hipsparseSpSV__solve func-

tion

8.4. HIP 5.6.1 (for ROCm 5.6.1)

97

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.6.1
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.6.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.6.1

ROCm Documentation, Release 5.7.1

8.5 ROCm 5.6.0

8.5.1 Release Highlights

ROCm 5.6 consists of several Al software ecosystem improvements to our fast-growing user base. A few
examples include:

New documentation portal at https://rocm.docs.amd.com

Ongoing software enhancements for LLMs, ensuring full compliance with the HuggingFace unit test

suite

OpenAl Triton, CuPy, HIP Graph support, and many other library performance enhancements

Improved ROCm deployment and development tools, including CPU-GPU (rocGDB) debugger, pro-

filer,

and docker containers

New pseudorandom generators are available in rocRAND. Added support for half-precision transforms
in hipFFT/rocFFT. Added LU refactorization and linear system solver for sparse matrices in roc-
SOLVER.

8.5.2 OS and GPU Support Changes

e SLES15 SP5 support was added this release. SLES15 SP3 support was dropped.

e AMD Instinct MI50, Radeon Pro VII, and Radeon VII products (collectively referred to as gfx906
GPUs) will be entering the maintenance mode starting Q3 2023. This will be aligned with ROCm 5.7
GA release date.

No new features and performance optimizations will be supported for the gfx906 GPUs beyond
ROCm 5.7

Bug fixes / critical security patches will continue to be supported for the gfx906 GPUs till Q2
2024 (End of Maintenance [EOM])(will be aligned with the closest ROCm release)

Bug fixes during the maintenance will be made to the next ROCm point release
Bug fixes will not be back ported to older ROCm releases for this SKU

Distro / Operating system updates will continue as per the ROCm release cadence for gfx906
GPUs till EOM.

8.5.3 AMDSMI CLI 23.0.0.4

8.5.3.1 Added

« AMDSMI CLI tool enabled for Linux Bare Metal & Guest

o Package: amd-smi-lib

98

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.5.3.2 Known Issues

e not all Error Correction Code (ECC) fields are currently supported
« RHEL 8 & SLES 15 have extra install steps

8.5.4 Kernel Modules (DKMS)

8.5.4.1 Fixes

e Stability fix for multi GPU system reproducilble via ROCm_ Bandwidth_ Test as reported in Issue
2198.

8.5.5 HIP 5.6 (For ROCm 5.6)

8.5.5.1 Optimizations

e Consolidation of hipamd, rocclr and OpenCL projects in clr

e Optimized lock for graph global capture mode

8.5.5.2 Added

e Added hipRTC support for amd_ hip_ fp16

¢ Added hipStreamGetDevice implementation to get the device associated with the stream
e Added HIP_AD_FORMAT_SIGNED_INT16 in hipArray formats

e hipArrayGetlnfo for getting information about the specified array

e hipArrayGetDescriptor for getting 1D or 2D array descriptor

e hipArray3DGetDescriptor to get 3D array descriptor

8.5.5.3 Changed

e hipMallocAsync to return success for zero size allocation to match hipMalloc

e Separation of hipcc perl binaries from HIP project to hipcc project. hip-devel package depends on
newly added hipcc package

e Consolidation of hipamd, ROCclr, and OpenCL repositories into a single repository called clr. Instruc-
tions are updated to build HIP from sources in the HIP Installation guide

¢ Removed hipBusBandwidth and hipCommander samples from hip-tests

8.5. ROCm 5.6.0 99

https://github.com/RadeonOpenCompute/ROCm/issues/2198
https://github.com/RadeonOpenCompute/ROCm/issues/2198

ROCm Documentation, Release 5.7.1

8.5.5.4 Fixed

e Fixed regression in hipMemCpyParam3D when offset is applied

8.5.5.5 Known Issues

o Limited testing on xnack+ configuration
— Multiple HIP tests failures (gpuvm fault or hangs)

« hipSetDevice and hipSetDeviceFlags APIs return hipErrorInvalidDevice instead of hipErrorNoDevice,
on a system without GPU

o Known memory leak when code object files are loaded /unloaded via hipModuleLoad /hipModuleUnload
APIs. Issue will be fixed in a future ROCm release

8.5.5.6 Upcoming changes in future release

e Removal of genarch from hipDeviceProp_ t structure
o Addition of new fields in hipDeviceProp_ t structure

— maxTexturelD

— maxTexture2D

— maxTexturelDLayered

— maxTexture2DLayered

— sharedMemPerMultiprocessor

— deviceOverlap

— asyncEngineCount

— surfaceAlignment

— unifiedAddressing

— computePreemptionSupported

— uuid

Removal of deprecated code

— hip-hcc codes from hip code tree
e Correct hipArray usage in HIP APIs such as hipMemcpyAtoH and hipMemcpyHtoA
o« HIPMEMCPY_ 3D fields correction (unsigned int -> size_ t)

e Renaming of ‘memoryType’ in hipPointerAttribute_t structure to ‘type’

100 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.5.6 ROCgdb-13 (For ROCm 5.6.0)

8.5.6.1 Optimized

e Improved performances when handling the end of a process with a large number of threads.
Known Issues
e On certain configurations, ROCgdb can show the following warning message:
warning: Probes-based dynamic linker interface failed. Reverting to original interface.

This does not affect ROCgdb’s functionalities.

8.5.7 ROCprofiler (For ROCm 5.6.0)

In ROCm 5.6 the rocprofilervl and rocprofilerv2 include and library files of ROCm 5.5 are split into separate
files. The rocmtools files that were deprecated in ROCm 5.5 have been removed.

ROCm 5.6 rocprofilervl rocprofilerv2

Tool script | bin/rocprof bin/rocprofv2

APT include | include/rocprofiler /rocprofiler.h | include/rocprofiler/v2/rocprofiler.h
API library | lib/librocprofiler.so.1 lib/librocprofiler.so.2

The ROCm Profiler Tool that uses rocprofilerV1 can be invoked using the following command:

$ rocprof ...

To write a custom tool based on the rocprofilerV1 API do the following:

main.c:
#include <rocprofiler /rocprofiler.h> // Use the rocprofilerV1 API
int main() {

// Use the rocprofilerV1 API

return 0;

}

This can be built in the following manner:

$ gce main.c -I/opt/rocm-5.6.0/include -L/opt/rocm-5.6.0/1ib -Irocprofiler64

The resulting a.out will depend on /opt/rocm-5.6.0/1ib/librocprofiler64.so.1.
The ROCm Profiler that uses rocprofilerV2 API can be invoked using the following command:

$ rocprofv2 ..

To write a custom tool based on the rocprofilerV2 API do the following:

main.c:
#include <rocprofiler/v2/rocprofiler.h> // Use the rocprofilerV2 API
int main() {

// Use the rocprofilerV2 API

return 0;

}

This can be built in the following manner:

8.5. ROCm 5.6.0 101

ROCm Documentation, Release 5.7.1

$ gce main.c -I/opt/rocm-5.6.0/include -L/opt/rocm-5.6.0/1ib -Irocprofiler64-v2

The resulting a.out will depend on /opt/rocm-5.6.0/lib/librocprofiler64.so.2.

8.5.7.1 Optimized

e Improved Test Suite

8.5.7.2 Added

e ‘end_time’ need to be disabled in roctx trace.txt

8.5.7.3 Fixed

o rocprof in ROcm/5.4.0 gpu selector broken.
e rocprof in ROCm/5.4.1 fails to generate kernel info.
« rocprof clobbers LD_PRELOAD.

8.5.8 Library Changes in ROCM 5.6.0

Library Version
hipBLAS 1.0.0
hipCUB 2.13.1
hipFFT 1.0.12
hipSOLVER 1.8.0
hipSPARSE 2.3.6
MIOpen 2.19.0
rccl 2.15.5
rocALUTION 2.1.9
rocBLAS 3.0.0
rocFFT 1.0.23
rocm-cmake 0.9.0
rocPRIM 2.13.0
rocRAND 2.10.17
rocSOLVER 3.22.0
rocSPARSE 2.5.2
rocThrust 2.18.0
rocWMMA 1.1.0
Tensile 4.37.0

102

Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.6.0
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.6.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.6.0

ROCm Documentation, Release 5.7.1

8.5.8.1 hipBLAS 1.0.0
hipBLAS 1.0.0 for ROCm 5.6.0
8.5.8.1.1 Changed

o added const qualifier to hipBLAS functions (swap, shmv, spmv, symv, trsm) where missing

8.5.8.1.2 Removed

e removed support for deprecated hipblasInt8Datatype_t enum
e removed support for deprecated hipblasSetInt8Datatype and hipblasGetInt8Datatype functions

8.5.8.1.3 Deprecated

e in-place trmm is deprecated. It will be replaced by trmm which includes both in-place and out-of-place
functionality

8.5.8.2 hipCUB 2.13.1

hipCUB 2.13.1 for ROCm 5.6.0

8.5.8.2.1 Added

e Benchmarks for BlockShuffle, BlockLoad, and BlockStore.

8.5.8.2.2 Changed

¢ CUB backend references CUB and Thrust version 1.17.2.

e Improved benchmark coverage of BlockScan by adding ExclusiveScan, benchmark coverage of Block-
RadixSort by adding SortBlockedToStriped, and benchmark coverage of WarpScan by adding Broad-
cast.

o Updated docs directory structure to match the standard of rocm-docs-core.

8.5.8.2.3 Known Issues

o BlockRadixRankMatch is currently broken under the rocPRIM backend.

e BlockRadixRankMatch with a warp size that does not exactly divide the block size is broken under
the CUB backend.

8.5. ROCm 5.6.0 103

https://github.com/RadeonOpenCompute/rocm-docs-core

ROCm Documentation, Release 5.7.1

8.5.8.3 hipFFT 1.0.12

hipFFT 1.0.12 for ROCm 5.6.0

8.5.8.3.1 Added

o Implemented the hipfftXtMakePlanMany, hipfftXtGetSizeMany, hipfitXtExec APIs, to allow request-

ing half-precision transforms.

8.5.8.3.2 Changed

o Added —precision argument to benchmark/test clients. —double is still accepted but is deprecated as a

method to request a double-precision transform.

8.5.8.4 hipSOLVER 1.8.0

hipSOLVER 1.8.0 for ROCm 5.6.0

8.5.8.4.1 Added

e Added compatibility API with hipsolverRf prefix

8.5.8.5 hipSPARSE 2.3.6

hipSPARSE 2.3.6 for ROCm 5.6.0

8.5.8.5.1 Added

e Added SpGEMM algorithms

8.5.8.5.2 Changed

e For hipsparseXbsr2csr and hipsparseXcsr2bsr,
HIPSPARSE_ STATUS INVALID SIZE

8.5.8.6 MIOpen 2.19.0

MIOpen 2.19.0 for ROCm 5.6.0

blockDim

0 now returns

104

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.5.8.6.1 Added

e ROCm 5.5 support for gfx1101 (Navi32)

8.5.8.6.2 Changed

e Tuning results for MLIR on ROCm 5.5
e Bumping MLIR commit to 5.5.0 release tag

8.5.8.6.3 Fixed

e Fix 3d convolution Host API bug
o [HOTFIX][MI200][FP16] Disabled ConvHipImplicitGemmBwdXdlops when FP16_ALT is required.

8.5.8.7 rccl 2.15.5

RCCL 2.15.5 for ROCm 5.6.0

8.5.8.7.1 Changed

e Compatibility with NCCL 2.15.5

o Unit test executable renamed to rccl-UnitTests

8.5.8.7.2 Added

o HW-topology aware binary tree implementation
e Experimental support for MSCCL

e New unit tests for hipGraph support

e NPKit integration

8.5.8.7.3 Fixed

e rocm-smi ID conversion
e Support for HIP_ VISIBLE_DEVICES for unit tests
o Support for p2p transfers to non (HIP) visible devices

8.5. ROCm 5.6.0 105

ROCm Documentation, Release 5.7.1

8.5.8.7.4 Removed

e Removed TransferBench from tools. Exists in standalone repo:

https://github.com/ROCmSoftwarePlatform/TransferBench

8.5.8.8 rocALUTION 2.1.9

rocALUTION 2.1.9 for ROCm 5.6.0

8.5.8.8.1 Improved

o Fixed synchronization issues in level 1 routines

8.5.8.9 rocBLAS 3.0.0

rocBLAS 3.0.0 for ROCm 5.6.0

8.5.8.9.1 Optimizations

Improved performance of Level 2 rocBLAS GEMYV on gfx90a GPU for non-transposed problems having
small matrices and larger batch counts. Performance enhanced for problem sizes when m and n <=
32 and batch count >= 256.

Improved performance of rocBLAS syr2k for single, double, and double-complex precision, and her2k
for double-complex precision. Slightly improved performance for general sizes on gfx90a.

8.5.8.9.2 Added

Added bf16 inputs and 32 compute support to Level 1 rocBLAS Extension functions axpy_ ex, scal__ex
and nrm2 ex.

.8.9.3 Deprecated

trmm inplace is deprecated. It will be replaced by trmm that has both inplace and out-of-place
functionality

rocblas_query_int8_layout_ flag() is deprecated and will be removed in a future release
rocblas_ gemm_ flags pack int8x4 enum is deprecated and will be removed in a future release

rocblas_set_ device__memory_size() is deprecated and will be replaced by a future function
rocblas_increase_device__memory_ size()

rocblas_is_user_managing device_memory() is deprecated and will be removed in a future release

106

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.5.8.9.4 Removed

e is_ complex helper was deprecated and now removed. Use rocblas_is_ complex instead.

e The enum truncate_t and the value truncate was deprecated and now removed from. It was replaced
by rocblas_ truncate_t and rocblas_ truncate, respectively.

e rocblas_set_int8 type for hipblas was deprecated and is now removed.

e rocblas_get_int8 type_for hipblas was deprecated and is now removed.

8.5.8.9.5 Dependencies

e build only dependency on python joblib added as used by Tensile build

o fix for cmake install on some OS when performed by install.sh -d —cmake__install

8.5.8.9.6 Fixed

« make trsm offset calculations 64 bit safe

8.5.8.9.7 Changed

o refactor rotg test code

8.5.8.10 rocFFT 1.0.23

rocFFT 1.0.23 for ROCm 5.6.0

8.5.8.10.1 Added

e Implemented half-precision transforms, which can be requested by passing rocfft_ precision_ half to
rocfft__plan_ create.

e Implemented a hierarchical solution map which saves how to decompose a problem and the kernels to
be used.

o Implemented a first version of offline-tuner to support tuning kernels for C2C/Z2Z problems.

8.5.8.10.2 Changed

e Replaced std::complex with hipComplex data types for data generator.

e FFT plan dimensions are now sorted to be row-major internally where possible, which produces better
plans if the dimensions were accidentally specified in a different order (column-major, for example).

o Added —precision argument to benchmark/test clients. —double is still accepted but is deprecated as a
method to request a double-precision transform.

8.5. ROCm 5.6.0 107

ROCm Documentation, Release 5.7.1

8.5.8.10.3 Fixed

e Fixed over-allocation of LDS in some real-complex kernels, which was resulting in kernel launch failure.

8.5.8.11 rocm-cmake 0.9.0

rocm-cmake 0.9.0 for ROCm 5.6.0

8.5.8.11.1 Added

e Added the option ROCM_HEADER_ WRAPPER_ WERROR
— Compile-time C macro in the wrapper headers causes errors to be emitted instead of warnings.

— Configure-time CMake option sets the default for the C macro.

8.5.8.12 rocPRIM 2.13.0

rocPRIM 2.13.0 for ROCm 5.6.0

8.5.8.12.1 Added

e New block level radix_ rank primitive.
e New block level radix_rank match primitive.

e Added a stable block sorting implementation. This be used with block sort by using the
block_sort_ algorithm::stable_merge_sort algorithm.

8.5.8.12.2 Changed

e Improved the performance of block radix sort and device radix_sort.
e Improved the performance of device merge sort.

o Updated docs directory structure to match the standard of rocm-docs-core. Contributed by: vO1dXYZ.

8.5.8.12.3 Known Issues

e Disabled GPU error messages relating to incorrect warp operation usage with Navi GPUs on Windows,
due to GPU printf performance issues on Windows.

e When ROCPRIM_DISABLE_LOOKBACK__SCAN is set, device_scan fails for input sizes bigger
than scan_ config::size limit, which defaults to std::numeric_ limits<unsigned int>::max().

108 Chapter 8. Changelog

https://github.com/RadeonOpenCompute/rocm-docs-core
https://github.com/v01dXYZ

ROCm Documentation, Release 5.7.1

8.5.8.13 rocRAND 2.10.17

rocRAND 2.10.17 for ROCm 5.6.0

8.5.8.13.1 Added

e MT19937 pseudo random number generator based on M. Matsumoto and T. Nishimura, 1998, Mersenne
Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator.

e New benchmark for the device API using Google Benchmark, benchmark rocrand_ device api,
replacing benchmark_rocrand_ kernel. benchmark_rocrand_kernel is deprecated and will be
removed in a future version. Likewise, benchmark curand_ host_ api is added to replace
benchmark_curand_ generate and benchmark curand_device api is added to replace bench-
mark curand_kernel.

o experimental HIP-CPU feature

e ThreeFry pseudorandom number generator based on Salmon et al., 2011, “Parallel random numbers:
as easy as 1, 2, 3”.

8.5.8.13.2 Changed

e Python 2.7 is no longer officially supported.

8.5.8.14 rocSOLVER 3.22.0

rocSOLVER 3.22.0 for ROCm 5.6.0

8.5.8.14.1 Added

e LU refactorization for sparse matrices
— CSRRF_ANALYSIS
— CSRRF_SUMLU
— CSRRF_SPLITLU
— CSRRF_REFACTLU
o Linear system solver for sparse matrices
— CSRRF_SOLVE

o Added type rocsolver_ rfinfo for use with sparse matrix routines

8.5. ROCm 5.6.0 109

ROCm Documentation, Release 5.7.1

8.5.8.14.2 Optimized

e Improved the performance of BDSQR and GESVD when singular vectors are requested

8.5.8.14.3 Fixed
e« BDSQR and GESVD should no longer hang when the input contains NaN or Inf
8.5.8.15 rocSPARSE 2.5.2
rocSPARSE 2.5.2 for ROCm 5.6.0
8.5.8.15.1 Improved

o Fixed a memory leak in csritsv

e Fixed a bug in csrsm and bsrsm

8.5.8.16 rocThrust 2.18.0

rocThrust 2.18.0 for ROCm 5.6.0

8.5.8.16.1 Fixed

e lower_bound, upper_bound, and binary_ search failed to compile for certain types.

8.5.8.16.2 Changed

o Updated docs directory structure to match the standard of rocm-docs-core.

8.5.8.17 rocWMMA 1.1.0

rocWMMA 1.1.0 for ROCm 5.6.0

8.5.8.17.1 Added

o Added cross-lane operation backends (Blend, Permute, Swizzle and Dpp)

o Added GPU kernels for rocWMMA unit test pre-process and post-process operations (fill, validation)
e Added performance gemm samples for half, single and double precision

e Added rocWMMA cmake versioning

o Added vectorized support in coordinate transforms

e Included ROCm smi for runtime clock rate detection

o Added fragment transforms for transpose and change data layout

110 Chapter 8. Changelog

https://github.com/RadeonOpenCompute/rocm-docs-core

ROCm Documentation, Release 5.7.1

8.5.8.17.2 Changed

e Default to GPU rocBLAS validation against rocWMMA
e Re-enabled int8 gemm tests on gfx9

e Upgraded to C++17

e Restructured unit test folder for consistency

e Consolidated rocWMMA samples common code

8.5.8.18 Tensile 4.37.0

Tensile 4.37.0 for ROCm 5.6.0

8.5.8.18.1 Added

e Added user driven tuning API

e Added decision tree fallback feature

e Added SingleBuffer + AtomicAdd option for GlobalSplitU

e DirectToVgpr support for fp16 and Int8 with TN orientation

o Added new test cases for various functions

o Added SingleBuffer algorithm for ZGEMM/CGEMM

o Added joblib for parallel map calls

e Added support for MFMA + LocalSplitU + DirectToVgprA+B
e Added asmcap check for MIArchVgpr

¢ Added support for MFMA + LocalSplitU

e Added frequency, power, and temperature data to the output

8.5.8.18.2 Optimizations

e Improved the performance of GlobalSplitU with SingleBuffer algorithm
e Reduced the running time of the extended and pre_ checkin tests
e Optimized the Tailloop section of the assembly kernel

o Optimized complex GEMM (fixed vgpr allocation, unified CGEMM and ZGEMM code in MulMIoutAl-
phaToArch)

e Improved the performance of the second kernel of MultipleBuffer algorithm

8.5. ROCm 5.6.0 111

ROCm Documentation, Release 5.7.1

8.5.8.18.3 Changed

e Updated custom kernels with 64-bit offsets

o Adapted 64-bit offset arguments for assembly kernels

e Improved temporary register re-use to reduce max sgpr usage

o Removed some restrictions on VectorWidth and DirectToVgpr

e Updated the dependency requirements for Tensile

e Changed the range of AssertSummationElementMultiple

e Modified the error messages for more clarity

e Changed DivideAndReminder to vectorStaticRemainder in case quotient is not used

¢ Removed dummy vgpr for vectorStaticRemainder

e Removed tmpVgpr parameter from vectorStaticRemainder /Divide/DivideAndReminder

e Removed qReg parameter from vectorStaticRemainder

8.5.8.18.4 Fixed

o Fixed tmp sgpr allocation to avoid over-writing values (alpha)

e 64-bit offset parameters for post kernels

o Fixed gfx908 CI test failures

e Fixed offset calculation to prevent overflow for large offsets

e Fixed issues when BufferLoad and BufferStore are equal to zero

e Fixed StoreCInUnroll + DirectToVgpr + no uselnitAccVgprOpt mismatch
e Fixed DirectToVgpr 4+ LocalSplitU + FractionallLLoad mismatch

e Fixed the memory access error related to StaggerU + large stride
e Fixed ZGEMM 4x4 MatrixInst mismatch

e Fixed DGEMM 4x4 MatrixInst mismatch

e Fixed ASEM + GSU + NoTailLoop opt mismatch

e Fixed AssertSummationElementMultiple + GlobalSplitU issues

e Fixed ASEM + GSU + TailLoop inner unroll

112 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.6 ROCm 5.5.1

8.6.1 What’s New in This Release

8.6.1.1 HIP SDK for Windows

AMD is pleased to announce the availability of the HIP SDK for Windows as part of the ROCm platform.
The HIP SDK OS and GPU support page lists the versions of Windows and GPUs validated by AMD. HIP
SDK features on Windows are described in detail in our What is ROCm? page and differs from the Linux
feature set. Visit Quick Start page to get started. Known issues are tracked on GitHub.

8.6.1.2 HIP API Change

The following HIP API is updated in the ROCm 5.5.1 release:

8.6.1.2.1 hipDeviceSetCacheConfig

e The return value for hipDeviceSetCacheConfig is updated from hipErrorNotSupported to hipSuccess

8.6.2 Library Changes in ROCM 5.5.1

Library Version
hipBLAS 0.54.0
hipCUB 2.13.1
hipFFT 1.0.11

hipSOLVER | 1.7.0
hipSPARSE | 2.3.5

MIOpen 2.19.0
rcel 2.15.5
rocALUTION | 2.1.8
rocBLAS 2.47.0
rocFFT 1.0.22
rocm-cmake 0.8.1
rocPRIM 2.13.0
rocRAND 2.10.17

rocSOLVER 3.21.0
rocSPARSE 2.5.1

rocThrust 2.17.0
rocWMMA 1.0
Tensile 4.36.0

8.6. ROCm 5.5.1 113

https://rocm.docs.amd.com/en/docs-5.5.1/release/windows_support.html
https://rocm.docs.amd.com/en/docs-5.5.1/rocm.html#rocm-on-windows
https://rocm.docs.amd.com/en/docs-5.5.1/deploy/windows/quick_start.html
https://github.com/RadeonOpenCompute/ROCm/issues?q=is%3Aopen+label%3A5.5.1+label%3A%22Verified+Issue%22+label%3AWindows
https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.5.1
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.5.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.5.1

ROCm Documentation, Release 5.7.1

8.7 ROCm 5.5.0

8.7.1 What’s New in This Release

8.7.1.1 HIP Enhancements

The ROCm v5.5 release consists of the following HIP enhancements:

8.7.1.1.1 Enhanced Stack Size Limit

In this release, the stack size limit is increased from 16k to 131056 bytes (or 128K - 16). Applications
requiring to update the stack size can use hipDeviceSetLimit API.

8.7.1.1.2 hipcc Changes

The following hipcc changes are implemented in this release:

e hipcc will not implicitly link to libpthread and librt, as they are no longer a link time dependence for
HIP programs. Applications that depend on these libraries must explicitly link to them.

e -use-staticlib and -use-sharedlib options are deprecated.

8.7.1.1.3 Future Changes

o Separation of hipcc binaries (Perl scripts) from HIP to hipcc project. Users will access separate hipcc
package for installing hipcc binaries in future ROCm releases.

e In a future ROCm release, the following samples will be removed from the hip-tests project.

— hipBusbandWidth at https://github.com/ROCm-Developer-Tools/hip-tests/tree/develop/
samples/1_Utils/shipBusBandwidth

— hipCommander at https://github.com/ROCm-Developer-Tools/hip-tests/tree/develop/samples/
1_ Utils/hipCommander

Note that the samples will continue to be available in previous release branches.

e Removal of genarch from hipDeviceProp_ t structure
o Addition of new fields in hipDeviceProp_ t structure

— maxTexturelD

— maxTexture2D

— maxTexturelDLayered

— maxTexture2DLayered

— sharedMemPerMultiprocessor

— deviceOverlap

— asyncEngineCount

— surfaceAlignment

— unified Addressing

114 Chapter 8. Changelog

https://github.com/ROCm-Developer-Tools/hip-tests/tree/develop/samples/1_Utils/shipBusBandwidth
https://github.com/ROCm-Developer-Tools/hip-tests/tree/develop/samples/1_Utils/shipBusBandwidth
https://github.com/ROCm-Developer-Tools/hip-tests/tree/develop/samples/1_Utils/hipCommander
https://github.com/ROCm-Developer-Tools/hip-tests/tree/develop/samples/1_Utils/hipCommander

ROCm Documentation, Release 5.7.1

— computePreemptionSupported
— hostRegisterSupported
— uuid
e Removal of deprecated code
— hip-hcc codes from hip code tree
e Correct hipArray usage in HIP APIs such as hipMemcpyAtoH and hipMemcpyHtoA

o HIPMEMCPY_ 3D fields correction to avoid truncation of “size t” to “unsigned int” inside hipMem-
cpy3D()

¢ Renaming of ‘memoryType’ in hipPointerAttribute_t structure to ‘type’

e Correct hipGetLastError to return the last error instead of last API call’s return code

o Update hipExternalSemaphoreHandleDesc to add “unsigned int reserved[16]”

e Correct handling of flag values in hipIpcOpenMemHandle for hipIpcMemLazyEnablePeerAccess

o Remove hiparray* and make it opaque with hipArray_t

8.7.1.1.4 New HIP APIs in This Release

Note

This is a pre-official version (beta) release of the new APIs and may contain unresolved issues.

8.7.1.1.4.1 Memory Management HIP APIs

The new memory management HIP API is as follows:

o Sets information on the specified pointer [BETA].

hipError_ t hipPointerSet Attribute(const void* value, hipPointer_attribute attribute, hipDeviceptr_t ptr);

8.7.1.1.4.2 Module Management HIP APIs

The new module management HIP APIs are as follows:

o Launches kernel f with launch parameters and shared memory on stream with arguments passed to
kernelParams, where thread blocks can cooperate and synchronize as they execute.

hipError_t hipModuleLaunchCooperativeKernel(hipFunction_ t f, unsigned int gridDimX, unsigned int,
—gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int
—blockDimZ, unsigned int sharedMemBytes, hipStream__t stream, void** kernelParams);

e Launches kernels on multiple devices where thread blocks can cooperate and synchronize as they
execute.

hipError_ t hipModuleLaunchCooperativeKernelMultiDevice(hipFunctionLaunchParams* launchParamsList,
— unsigned int numDevices, unsigned int flags);

8.7. ROCm 5.5.0 115

ROCm Documentation, Release 5.7.1

8.7.1.1.4.3 HIP Graph Management APIs

The new HIP Graph Management APIs are as follows:

Creates a memory allocation node and adds it to a graph [BETA]

hipError_t hipGraphAddMemAllocNode(hipGraphNode_ t* pGraphNode, hipGraph_ t graph, const,,
—hipGraphNode__t* pDependencies, size_t numDependencies, hipMemAllocNodeParams™* pNodeParams);

Return parameters for memory allocation node [BETA]

hipError_t hipGraphMemAllocNodeGetParams(hipGraphNode__t node, hipMemAllocNodeParams*
—pNodeParams);

Creates a memory free node and adds it to a graph [BETA]

hipError__t hipGraphAddMemFreeNode(hipGraphNode_ t* pGraphNode, hipGraph_ t graph, const
—hipGraphNode_ t* pDependencies, size_t numDependencies, void* dev_ ptr);

Returns parameters for memory free node [BETA].

hipError_t hipGraphMemFreeNodeGetParams(hipGraphNode_t node, void* dev_ ptr);

Write a DOT file describing graph structure [BETA].

hipError__t hipGraphDebugDotPrint(hipGraph_t graph, const char* path, unsigned int flags);

Copies attributes from source node to destination node [BETA].

hipError_t hipGraphKernelNodeCopyAttributes(hipGraphNode_t hSrc, hipGraphNode_t hDst);

Enables or disables the specified node in the given graphExec [BETA]

hipError__t hipGraphNodeSetEnabled (hipGraphExec_t hGraphExec, hipGraphNode_t hNode, unsigned int,
—isEnabled);

Query whether a node in the given graphExec is enabled [BETA]

hipError_t hipGraphNodeGetEnabled (hipGraphExec_ t hGraphExec, hipGraphNode_t hNode, unsigned
—int* isEnabled);

8.7.1.1.5 OpenMP Enhancements

This release consists of the following OpenMP enhancements:

Additional support for OMPT functions get_ device_time and get_ record_ type.
Add support for min/max fast fp atomics on AMD GPUs.

Fix the use of the abs function in C device regions.

116

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.7.2 Deprecations and Warnings

8.7.2.1 HIP Deprecation

The hipcc and hipconfig Perl scripts are deprecated. In a future release, compiled binaries will be available
as hipcc.bin and hipconfig.bin as replacements for the Perl scripts.

Note

There will be a transition period where the Perl scripts and compiled binaries are available
before the scripts are removed. There will be no functional difference between the Perl scripts
and their compiled binary counterpart. No user action is required. Once these are available,
users can optionally switch to hipce.bin and hipconfig.bin. The hipcc/hipconfig soft link will
be assimilated to point from hipcc/hipconfig to the respective compiled binaries as the default
option.

8.7.2.1.1 Linux Filesystem Hierarchy Standard for ROCm

ROCm packages have adopted the Linux foundation filesystem hierarchy standard in this release to ensure
ROCm components follow open source conventions for Linux-based distributions. While moving to a new
filesystem hierarchy, ROCm ensures backward compatibility with its 5.1 version or older filesystem hierarchy.
See below for a detailed explanation of the new filesystem hierarchy and backward compatibility.

8.7.2.1.2 New Filesystem Hierarchy

The following is the new filesystem hierarchy:4

/opt/rocm-<ver>
| --bin
| --All externally exposed Binaries
| --libexec
| --<component>
| -- Component specific private non-ISA executables (architecture independent)
| --include
| -- <component>
| --<header files>
| --lib
| --lib<soname>.so -> lib<soname>>.so.major -> lib<soname>.so.major.minor.patch
(public libraries linked with application)
| --<component> (component specific private library, executable data)
| --<cmake>
| --components
| --<component>.config.cmake
| --share
| --html/<component>/* html
| --info/<component>/*.[pdf, md, txt]
| --man
| --doc
| --<component>
| --<licenses>
| --<component>
| --<misc files> (arch independent non-executable)
| --samples

Note

8.7. ROCm 5.5.0 117

ROCm Documentation, Release 5.7.1

ROCm will not support backward compatibility with the v5.1(old) file system hierarchy in its
next major release.

For more information, refer to https://refspecs.linuxfoundation.org/fhs.shtml.

8.7.2.1.3 Backward Compatibility with Older Filesystems

ROCm has moved header files and libraries to its new location as indicated in the above structure and
included symbolic-link and wrapper header files in its old location for backward compatibility.

Note

ROCm will continue supporting backward compatibility until the next major release.

8.7.2.1.4 Wrapper header files

Wrapper header files are placed in the old location (/opt/rocm-xxx/<component> /include) with a warning
message to include files from the new location (/opt/rocm-xxx/include) as shown in the example below:

// Code snippet from hip_ runtime.h
#pragma message “This file is deprecated. Use file from include path /opt/rocm-ver/include/ and prefix with hip”.
#include 7hip/hip_ runtime.h”

The wrapper header files’ backward compatibility deprecation is as follows:
e #pragma message announcing deprecation — ROCm v5.2 release
e F#pragma message changed to #warning — Future release
e F#warning changed to #error — Future release

e Backward compatibility wrappers removed — Future release

8.7.2.1.5 Library files

Library files are available in the /opt/rocm-xxx/lib folder. For backward compatibility, the old library
location (/opt/rocm-xxx/<component>/lib) has a soft link to the library at the new location.

Example:

$ 1s -1 /opt/rocm/hip/lib/

total 4

drwxr-xr-x 4 root root 4096 May 12 10:45 cmake

Irwxrwxrwx 1 root root 24 May 10 23:32 libamdhip64.so -> ../../lib/libamdhip64.so

8.7.2.1.6 CMake Config files

All CMake configuration files are available in the /opt/rocm-xxx/lib/cmake/<component> folder. For
backward compatibility, the old CMake locations (/opt/rocm-xxx/<component>/lib/cmake) consist of a
soft link to the new CMake config.

Example:

118 Chapter 8. Changelog

https://refspecs.linuxfoundation.org/fhs.shtml

ROCm Documentation, Release 5.7.1

$ Is -1 /opt/rocm/hip/lib/cmake /hip/
total O
Irwxrwxrwx 1 root root 42 May 10 23:32 hip-config.cmake -> ../../../../lib/cmake/hip /hip-config.cmake

8.7.2.2 ROCm Support For Code Object V3 Deprecated

Support for Code Object v3 is deprecated and will be removed in a future release.

8.7.2.3 Comgr V3.0 Changes

The following APIs and macros have been marked as deprecated. These are expected to be removed in a
future ROCm release and coincides with the release of Comgr v3.0.

8.7.2.3.1 API Changes

amd_ comgr action_info_set_ options()

amd__comgr_action_info_ get_ options()

8.7.2.3.2 Actions and Data Types

AMD__COMGR_ACTION_ADD_DEVICE_LIBRARIES
AMD_COMGR_ACTION_COMPILE_SOURCE_TO_FATBIN

For replacements, see the AMD_COMGR__ACTION_INFO_GET/SET_OPTION_LIST APIs, and the
AMD_COMGR_ACTION_COMPILE_SOURCE_ (WITH_DEVICE_LIBS) TO_BC macros.

8.7.2.4 Deprecated Environment Variables

The following environment variables are removed in this ROCm release:

GPU_MAX_ COMMAND_QUEUES
GPU_MAX_ WORKGROUP_SIZE 2D X
GPU_MAX_WORKGROUP_SIZE 2D_Y
GPU_MAX WORKGROUP_SIZE 3D X
GPU_MAX WORKGROUP_SIZE 3D_Y
GPU_MAX_ WORKGROUP_SIZE 3D_7Z
GPU_BLIT_ENGINE_TYPE

GPU_USE SYNC OBJECTS
AMD_OCL_SC_LIB
AMD_OCL_ENABLE MESSAGE_ BOX
GPU_FORCE_64BIT PTR
GPU_FORCE_OCL20_32BIT
GPU_RAW_TIMESTAMP

8.7.

ROCm 5.5.0 119

ROCm Documentation, Release 5.7.1

GPU_SELECT COMPUTE_RINGS_ID
GPU_USE_SINGLE_ SCRATCH
GPU_ENABLE LARGE_ ALLOCATION
HSA LOCAL_MEMORY_ ENABLE
HSA_ ENABLE_ COARSE_GRAIN_SVM
GPU_IFH MODE

OCL_SYSMEM REQUIREMENT
OCL_CODE_CACHE_ENABLE
OCL_CODE_CACHE_ RESET

8.7.3 Known Issues In This Release

The following are the known issues in this release.

8.7.3.1 DISTRIBUTED/TEST_ DISTRIBUTED_SPAWN Fails

When user applications call ncclCommAbort to destruct communicators and then create new communicators
repeatedly, subsequent communicators may fail to initialize.

This issue is under investigation and will be resolved in a future release.

8.7.3.2 Failures In HIP Directed Tests

Multiple HIP directed tests fail.

8.7.4 Library Changes in ROCM 5.5.0

Library Version
hipBLAS 0.53.0 0.54.0
hipCUB 2.13.0 2.13.1
hipFFT 1.0.10 1.0.11
hipSOLVER 1.6.0 1.7.0
hipSPARSE 2.3.3 2.3.5
MIOpen 2.19.0

recl 2.13.4 2.15.5
rocALUTION | 2.1.3 2.1.8
rocBLAS 2.46.0 2.47.0
rocFFT 1.0.21 1.0.22
rocm-cmake 0.8.0 0.8.1
rocPRIM 2.12.0 2.13.0
rocRAND 2.10.16 2.10.17
rocSOLVER 3.20.0 3.21.0
rocSPARSE 2.4.0 2.5.1
rocThrust 2.17.0
rocWMMA 0.9 1.0
Tensile 4.35.0 4.36.0

120

Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.5.0
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.5.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.5.0

ROCm Documentation, Release 5.7.1

8.7.4.1 hipBLAS 0.54.0

hipBLAS 0.54.0 for ROCm 5.5.0

8.7.4.1.1 Added
e added option to opt-in to use __ half for hipblasHalf type in the API for c+-+ users who define
HIPBLAS_USE_HIP_HALF
o added scripts to plot performance for multiple functions
e data driven hipblas-bench and hipblas-test execution via external yaml format data files

e client smoke test added for quick validation using command hipblas-test —yaml hipblas_ smoke.yaml

8.7.4.1.2 Fixed

« fixed datatype conversion functions to support more rocBLAS/cuBLAS datatypes
o fixed geqrf to return successfully when nullptrs are passed in with n == 0 || m ==
o fixed getrs to return successfully when given nullptrs with corresponding size = 0

o fixed getrs to give info = -1 when transpose is not an expected type

o fixed gels to return successfully when given nullptrs with corresponding size = 0

o fixed gels to give info = -1 when transpose is not in (‘N’, “T”) for real cases or not in (‘N’; ‘C’) for
complex cases

8.7.4.1.3 Changed

e changed reference code for Windows to OpenBLAS

e hipblas client executables all now begin with hipblas- prefix

8.7.4.2 hipCUB 2.13.1

hipCUB 2.13.1 for ROCm 5.5.0

8.7.4.2.1 Added

e Benchmarks for BlockShuffle, BlockLoad, and BlockStore.

8.7. ROCm 5.5.0 121

ROCm Documentation, Release 5.7.1

8.7.4.2.2 Changed

¢ CUB backend references CUB and Thrust version 1.17.2.

e Improved benchmark coverage of BlockScan by adding ExclusiveScan, benchmark coverage of Block-
RadixSort by adding SortBlockedToStriped, and benchmark coverage of WarpScan by adding Broad-
cast.

8.7.4.2.3 Fixed

e Windows HIP SDK support

8.7.4.2.4 Known Issues

o BlockRadixRankMatch is currently broken under the rocPRIM backend.

o BlockRadixRankMatch with a warp size that does not exactly divide the block size is broken under
the CUB backend.

8.7.4.3 hipFFT 1.0.11

hipFFT 1.0.11 for ROCm 5.5.0

8.7.4.3.1 Fixed

 Fixed old version rocm include/lib folders not removed on upgrade.

8.7.4.4 hipSOLVER 1.7.0

hipSOLVER 1.7.0 for ROCm 5.5.0

8.7.4.4.1 Added

e Added functions
— gesvd]j

* hipsolverSgesvdj_ bufferSize, hipsolverDgesvdj bufferSize, hipsolverCgesvdj_ bufferSize, hip-
solverZgesvdj_ bufferSize

* hipsolverSgesvdj, hipsolverDgesvdj, hipsolverCgesvdj, hipsolverZgesvdj
— gesvdjBatched

* hipsolverSgesvdjBatched_ bufferSize, hipsolverDgesvdjBatched_bufferSize, hipsolverCgesvd-
jBatched_ bufferSize, hipsolverZgesvdjBatched_ bufferSize

x hipsolverSgesvdjBatched, hipsolverDgesvdjBatched, hipsolverCgesvdjBatched, hip-
solverZgesvdjBatched

122 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.7.4.5 hipSPARSE 2.3.5
hipSPARSE 2.3.5 for ROCm 5.5.0
8.7.4.5.1 Improved

e Fixed an issue, where the rocm folder was not removed on upgrade of meta packages
e Fixed a compilation issue with cusparse backend

¢ Added more detailed messages on unit test failures due to missing input data

e Improved documentation

o Fixed a bug with deprecation messages when using gec9 (Thanks @Maetveis)

8.7.4.6 MIOpen 2.19.0
MIOpen 2.19.0 for ROCm 5.5.0
8.7.4.6.1 Added

e ROCm 5.5 support for gfx1101 (Navi32)

8.7.4.6.2 Changed

e Tuning results for MLIR on ROCm 5.5
e Bumping MLIR commit to 5.5.0 release tag

8.7.4.6.3 Fixed

e Fix 3d convolution Host API bug
o [HOTFIX][MI200][FP16] Disabled ConvHipImplicitGemmBwdXdlops when FP16__ALT is required.

8.7.4.7 rccl 2.15.5
RCCL 2.15.5 for ROCm 5.5.0
8.7.4.7.1 Changed

e Compatibility with NCCL 2.15.5

o Unit test executable renamed to rccl-UnitTests

8.7. ROCm 5.5.0 123

ROCm Documentation, Release 5.7.1

8.7.4.7.2 Added

o HW-topology aware binary tree implementation
¢ Experimental support for MSCCL

e New unit tests for hipGraph support

o NPKit integration

8.7.4.7.3 Fixed

e rocm-smi ID conversion
e Support for HIP_ VISIBLE_ DEVICES for unit tests
o Support for p2p transfers to non (HIP) visible devices

8.7.4.7.4 Removed

e Removed TransferBench from tools. Exists in standalone repo:
https://github.com/ROCmSoftwarePlatform/TransferBench

8.7.4.8 rocALUTION 2.1.8
rocALUTION 2.1.8 for ROCm 5.5.0
8.7.4.8.1 Added

e Added build support for Navi32

8.7.4.8.2 Improved

e Fixed a typo in MPI backend

e Fixed a bug with the backend when HIP support is disabled

e Fixed a bug in SAAMG hierarchy building on HIP backend
Improved SAAMG hierarchy build performance on HIP backend

8.7.4.8.3 Changed

o LocalVector::GetIndexValues(ValueType*) is deprecated, use LocalVector::GetIndexValues(const Lo-
calVector&, LocalVector*) instead

o LocalVector::SetIndexValues(const ValueType*) is deprecated, use LocalVector::SetIndexValues(const
LocalVector&, const LocalVector&) instead

e LocalMatrix::RSDirectInterpolation(const LocalVector&, const LocalVector&, LocalMatrix*, LocalMa-
trix*) is deprecated, use LocalMatrix::RSDirectInterpolation(const LocalVector&, const LocalVectoré&s,
LocalMatrix*) instead

124 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.7.4.

LocalMatrix::RSExtPIInterpolation(const LocalVector&, const LocalVector&, bool, float, LocalMa-
trix*, LocalMatrix*) is deprecated, use LocalMatrix::RSExtPIInterpolation(const LocalVector&, const
LocalVector&, bool, LocalMatrix*) instead

LocalMatrix::RugeStueben() is deprecated

LocalMatrix:: AMGSmoothed Aggregation(ValueType, const LocalVector&, const LocalVector&, Lo-
calMatrix*, LocalMatrix®, int) is deprecated, use LocalMatrix:: AMGAggregation(ValueType, const
LocalVector&, const LocalVectordz, LocalMatrix*, int) instead

LocalMatrix:: AMGAggregation(const LocalVector&, LocalMatrix*, LocalMatrix*) is deprecated, use
LocalMatrix:: AMGAggregation(const LocalVector&, LocalMatrix*) instead

9 rocBLAS 2.47.0

rocBLAS 2.47.0 for ROCm 5.5.0

8.7.4.

8.7.4.

8.7.4.

9.1 Added

added functionality rocblas_geam_ ex for matrix-matrix minimum operations

added HIP Graph support as beta feature for rocBLAS Level 1, Level 2, and Level 3(pointer mode
host) functions

added beta features API. Exposed using compiler define ROCBLAS_BETA_FEATURES_ API
added support for vector initialization in the rocBLAS test framework with negative increments
added windows build documentation for forthcoming support using ROCm HIP SDK

added scripts to plot performance for multiple functions

9.2 Optimizations

improved performance of Level 2 rocBLAS GEMYV for float and double precision. Performance en-
hanced by 150-200% for certain problem sizes when (m==n) measured on a gfx90a GPU.

improved performance of Level 2 rocBLAS GER for float, double and complex float precisions. Per-
formance enhanced by 5-7% for certain problem sizes measured on a gfx90a GPU.

improved performance of Level 2 rocBLAS SYMYV for float and double precisions. Performance en-
hanced by 120-150% for certain problem sizes measured on both gfx908 and gfx90a GPUs.

9.3 Fixed

fixed setting of executable mode on client script rocblas_ gentest.py to avoid potential permission errors
with clients rocblas-test and rocblas-bench

fixed deprecated API compatibility with Visual Studio compiler

fixed test framework memory exception handling for Level 2 functions when the host memory allocation
exceeds the available memory

8.7.

ROCm 5.5.0 125

ROCm Documentation, Release 5.7.1

8.7.4.9.4 Changed

o install.sh internally runs rmake.py (also used on windows) and rmake.py may be used directly by
developers on linux (use —help)

e rocblas client executables all now begin with rocblas- prefix

8.7.4.9.5 Removed

e install.sh removed options -o —cov as now Tensile will use the default COV format, set by cmake define
Tensile_ CODE__OBJECT__VERSION=default

8.7.4.10 rocFFT 1.0.22
rocFFT 1.0.22 for ROCm 5.5.0
8.7.4.10.1 Optimizations

e Improved performance of 1D lengths < 2048 that use Bluestein’s algorithm.
¢ Reduced time for generating code during plan creation.

o Optimized 3D R2C/C2R lengths 32, 84, 128.

o Optimized batched small 1D R2C/C2R cases.

8.7.4.10.2 Added

e Added gfx1101 to default AMDGPU__TARGETS.

8.7.4.10.3 Changed

e Moved client programs to C++17.
e Moved planar kernels and infrequently used Stockham kernels to be runtime-compiled.

e Moved transpose, real-complex, Bluestein, and Stockham kernels to library kernel cache.

8.7.4.10.4 Fixed

e Removed zero-length twiddle table allocations, which fixes errors from hipMallocManaged.

e Fixed incorrect freeing of HIP stream handles during twiddle computation when multiple devices are
present.

126 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.7.4.11 rocm-cmake 0.8.1

rocm-cmake 0.8.1 for ROCm 5.5.0

8.7.4.11.1 Fixed

o ROCMInstallTargets: Added compatibility symlinks for included cmake files in &1t;ROCM>/lib/
cmake/&1t; PACKAGE>.

8.7.4.11.2 Changed

e ROCMHeaderWrapper: The wrapper header deprecation message is now a deprecation warning.

8.7.4.12 rocPRIM 2.13.0

rocPRIM 2.13.0 for ROCm 5.5.0

8.7.4.12.1 Added

e New block level radix_ rank primitive.

e New block level radix_rank match primitive.

8.7.4.12.2 Changed

e Improved the performance of block radix_sort and device_ radix_ sort.

8.7.4.12.3 Known Issues

e Disabled GPU error messages relating to incorrect warp operation usage with Navi GPUs on Windows,
due to GPU printf performance issues on Windows.

8.7.4.12.4 Fixed

¢ Fixed benchmark build on Windows

8.7.4.13 rocRAND 2.10.17

rocRAND 2.10.17 for ROCm 5.5.0

8.7. ROCm 5.5.0 127

ROCm Documentation, Release 5.7.1

8.7.4.13.1 Added

MT19937 pseudo random number generator based on M. Matsumoto and T. Nishimura, 1998, Mersenne
Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator.

New benchmark for the device API using Google Benchmark, benchmark_rocrand_device_ api,
replacing benchmark_rocrand_ kernel. benchmark_ rocrand_kernel is deprecated and will be
removed in a future version. Likewise, benchmark curand_host_api is added to replace
benchmark_ curand_generate and benchmark curand_device api is added to replace bench-
mark curand_kernel.

experimental HIP-CPU feature

ThreeFry pseudorandom number generator based on Salmon et al., 2011, “Parallel random numbers:
as easy as 1, 2, 3”.

8.7.4.13.2 Changed

e Python 2.7 is no longer officially supported.

8.7.4.13.3 Fixed

e Windows HIP SDK support

8.7.4.14 rocSOLVER 3.21.0

rocSOLVER 3.21.0 for ROCm 5.5.0

8.7.4.14.1 Added

SVD for general matrices using Jacobi algorithm:

— GESVDJ (with batched and strided_ batched versions)
LU factorization without pivoting for block tridiagonal matrices:

— GEBLTTRF_NPVT (with batched and strided_ batched versions)
Linear system solver without pivoting for block tridiagonal matrices:

— GEBLTTRS_NPVT (with batched and strided_batched, versions)
Product of triangular matrices

- LAUUM
Added experimental hipGraph support for rocSOLVER functions

128

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.7.4.14.2 Optimized

o Improved the performance of SYEVJ/HEEVJ.

8.7.4.14.3 Changed

o STEDC, SYEVD/HEEVD and SYGVD/HEGVD now use fully implemented Divide and Conquer
approach.

8.7.4.14.4 Fixed

o SYEVJ/HEEVJ should now be invariant under matrix scaling.
e SYEVJ/HEEV]J should now properly output the eigenvalues when no sweeps are executed.
e Fixed GETF2_NPVT and GETRF_NPVT input data initialization in tests and benchmarks.

e Fixed rocblas missing from the dependency list of the rocsolver deb and rpm packages.

8.7.4.15 rocSPARSE 2.5.1

rocSPARSE 2.5.1 for ROCm 5.5.0

8.7.4.15.1 Added

¢ Added bsrgemm and spgemm for BSR format

e Added bsrgeam

e Added build support for Navi32

e Added experimental hipGraph support for some rocSPARSE routines

e Added csritsv, spitsv csr iterative triangular solve

e Added mixed precisions for SpMV

e Added batched SpMM for transpose A in COO format with atomic atomic algorithm

8.7.4.15.2 Improved

e Optimization to csr2bsr

e Optimization to csr2csr__compress
e Optimization to csr2coo

o Optimization to gebsr2csr

e Optimization to csr2gebsr

o Fixes to documentation

e Fixes a bug in COO SpMV gridsize

e Fixes a bug in SpMM gridsize when using very large matrices

8.7. ROCm 5.5.0 129

ROCm Documentation, Release 5.7.1

8.7.4.15.3 Known Issues

e In csritlu0, the algorithm rocsparse_itilu0_alg_sync_ split_ fusion has some accuracy issues to inves-
tigate with XNACK enabled. The fallback is rocsparse__itilu0_ alg sync_ split.

8.7.4.16 rocWMMA 1.0

rocWMMA 1.0 for ROCm 5.5.0

8.7.4.16.1 Added

e Added support for wave32 on gfx11+
e Added infrastructure changes to support hipRTC

e Added performance tracking system

8.7.4.16.2 Changed

e Modified the assignment of hardware information
e Modified the data access for unsigned datatypes
e Added library config to support multiple architectures

8.7.4.17 Tensile 4.36.0

Tensile 4.36.0 for ROCm 5.5.0

8.7.4.17.1 Added

o Add functions for user-driven tuning

o Add GFX11 support: HostLibraryTests yamls, rearragne FP320/FP640© instruction order, archCaps
for instruction renaming condition, adjust vgpr bank for A/B/C for optimize, separate vscnt and
vment, dual mac

e Add binary search for Grid-Based algorithm

o Add reject condition for (StoreCInUnroll + BufferStore=0) and (DirectToVgpr + SchedulelterAlg<3
+ PrefetchGlobalRead==2)

o Add support for (DirectToLds + hgemm + NN/NT/TT) and (DirectToLds + hgemm + GlobalLoad-
VectorWidth < 4)

o Add support for (DirectToLds + hgemm(TLU=True only) or sgemm + NumLoadsCoalesced > 1)
o Add GSU SingleBuffer algorithm for HSS/BSS

e Add gfx900:xnack-, gfx1032, gfx1034, gfx1035

e Enable gfx1031 support

130 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.7.4.

8.7.4.

17.2 Optimizations

Use AssertSizeLessThan for BufferStoreOffsetLimitCheck if it is smaller than MT1
Improve InitAccVegprOpt

17.3 Changed

Use global _atomic for GSU instead of flat and global_store for debug code

Replace flat_load/store with global_load/store

Use global_load/store for BufferLoad/Store=0 and enable scheduling

LocalSplitU support for HGEMM+HPA when MFMA disabled

Update Code Object Version

Type cast local memory to COMPUTE_DATA_TYPE in LDS to avoid precision loss
Update asm cap cache arguments

Unify SplitGlobalRead into ThreadSeparateGlobalRead and remove SplitGlobalRead
Change checks, error messages, assembly syntax, and coverage for DirectToLds
Remove unused cmake file

Clean up the LLVM dependency code

Update ThreadSeparateGlobalRead test cases for PrefetchGlobalRead=2

Update sgemm /hgemm test cases for Direct ToLds and ThreadSepareteGlobalRead

.17.4 Fixed

Add build-id to header of compiled source kernels

Fix solution index collisions

Fix h beta vectorwidth4 correctness issue for WMMA

Fix an error with BufferStore=0

Fix mismatch issue with (StoreCInUnroll 4+ PrefetchGlobalRead=2)

Fix MoveMIoutToArch bug

Fix flat load correctness issue on I8 and flat store correctness issue

Fix mismatch issue with BufferLoad=0 + TailLoop for large array sizes
Fix code generation error with BufferStore=0 and StoreCInUnrollPostLoop
Fix issues with DirectToVgpr + SchedulelterAlg<3

Fix mismatch issue with DGEMM TT + LocalReadVectorWidth=2

Fix mismatch issue with PrefetchGlobalRead=2

Fix mismatch issue with DirectToVgpr + PrefetchGlobalRead=2 + small tile size

Fix an error with PersistentKernel=0 + PrefetchAcrossPersistent=1 -+ PrefetchAcrossPersistent-
Mode=1

8.7.

ROCm 5.5.0 131

ROCm Documentation, Release 5.7.1

e Fix mismatch issue with DirectToVgpr + DirectTol.ds + only 1 iteration in unroll loop case

e Remove duplicate GSU kernels: for GSU = 1, GSUAlgorithm SingleBuffer and MultipleBuffer kernels
are identical

e Fix for failing CI tests due to CpuThreads=0
¢ Fix mismatch issue with DirectToLds + PrefetchGlobalRead=2

o Remove the reject condition for ThreadSeparateGlobalRead and DirectToLds (HGEMM, SGEMM
only)

o Modify reject condition for minimum lanes of ThreadSeparateGlobalRead (SGEMM or larger data
type only)

8.8 ROCm 5.4.3

8.8.1 Deprecations and Warnings
8.8.1.1 HIP Perl Scripts Deprecation

The hipcc and hipconfig Perl scripts are deprecated. In a future release, compiled binaries will be available
as hipcc.bin and hipconfig.bin as replacements for the Perl scripts.

Note

There will be a transition period where the Perl scripts and compiled binaries are available
before the scripts are removed. There will be no functional difference between the Perl scripts
and their compiled binary counterpart. No user action is required. Once these are available,
users can optionally switch to hipce.bin and hipconfig.bin. The hipcc/hipconfig soft link will
be assimilated to point from hipcc/hipconfig to the respective compiled binaries as the default
option.

8.8.1.1.1 Linux Filesystem Hierarchy Standard for ROCm

ROCm packages have adopted the Linux foundation filesystem hierarchy standard in this release to ensure
ROCm components follow open source conventions for Linux-based distributions. While moving to a new
filesystem hierarchy, ROCm ensures backward compatibility with its 5.1 version or older filesystem hierarchy.
See below for a detailed explanation of the new filesystem hierarchy and backward compatibility.

8.8.1.1.2 New Filesystem Hierarchy

The following is the new filesystem hierarchy:4

/opt/rocm-<ver>
| --bin
| --All externally exposed Binaries
| --libexec
| --<component>
| -- Component specific private non-ISA executables (architecture independent)
| --include
| -- <component>

(continues on next page)

132 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

(continued from previous page)

| --<header files>
| —lib
| --lib<soname>.so -> lib<soname>.so.major -> lib<soname>.so.major.minor.patch
(public libraries linked with application)
| --<component> (component specific private library, executable data)
| --<cmake>
| --components
| --<component>.config.cmake
| --share
| --html/<component>/* html
| --info/<component>/*.[pdf, md, txt]
| --man
| --doc
| --<component>
| --<licenses>
| --<component>
| --<misc files> (arch independent non-executable)
| --samples

Note

ROCm will not support backward compatibility with the v5.1(old) file system hierarchy in its
next major release.

For more information, refer to https://refspecs.linuxfoundation.org/fhs.shtml.

8.8.1.1.3 Backward Compatibility with Older Filesystems

ROCm has moved header files and libraries to its new location as indicated in the above structure and
included symbolic-link and wrapper header files in its old location for backward compatibility.

Note

ROCm will continue supporting backward compatibility until the next major release.

8.8.1.1.4 Wrapper header files

Wrapper header files are placed in the old location (/opt/rocm-xxx/<component> /include) with a warning
message to include files from the new location (/opt/rocm-xxx/include) as shown in the example below:

// Code snippet from hip_ runtime.h
#pragma message “This file is deprecated. Use file from include path /opt/rocm-ver/include/ and prefix with hip”.
#include 7hip/hip_ runtime.h”

The wrapper header files’ backward compatibility deprecation is as follows:
e #pragma message announcing deprecation — ROCm v5.2 release
e F#pragma message changed to #warning — Future release
e F#warning changed to #error — Future release

e Backward compatibility wrappers removed — Future release

8.8. ROCm 5.4.3 133

https://refspecs.linuxfoundation.org/fhs.shtml

ROCm Documentation, Release 5.7.1

8.8.1.1.5 Library files

Library files are available in the /opt/rocm-xxx/lib folder. For backward compatibility, the old library
location (/opt/rocm-xxx/<component>/lib) has a soft link to the library at the new location.

Example:

$ 1s -1 /opt/rocm/hip/lib/

total 4

drwxr-xr-x 4 root root 4096 May 12 10:45 cmake

Irwxrwxrwx 1 root root 24 May 10 23:32 libamdhip64.so -> ../../lib/libamdhip64.so

8.8.1.1.6 CMake Config files

All CMake configuration files are available in the /opt/rocm-xxx/lib/cmake/<component> folder. For
backward compatibility, the old CMake locations (/opt/rocm-xxx/<component>/lib/cmake) consist of a
soft link to the new CMake config.

Example:

$ 1s -1 /opt/rocm/hip/lib/cmake/hip/
total O
Irwxrwxrwx 1 root root 42 May 10 23:32 hip-config.cmake -> ../../../../lib/cmake/hip /hip-config.cmake

8.8.2 Fixed Defects

8.8.2.1 Compiler Improvements

In ROCm v5.4.3, improvements to the compiler address errors with the following signatures:
e “error: unhandled SGPR spill to memory”
!77

e “cannot scavenge register without an emergency spill slot

e “error: ran out of registers during register allocation”

8.8.3 Known Issues
8.8.3.1 Compiler Option Error at Runtime

Some users may encounter a “Cannot find Symbol” error at runtime when using -save-temps. While most
-save-temps use cases work correctly, this error may appear occasionally.

This issue is under investigation, and the known workaround is not to use -save-temps when the error appears.

134 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.8.4 Library Changes in ROCM 5.4.3

8.8.4.1 rocFFT 1.0.21

rocFFT 1.0.21 for ROCm 5.4.3

8.8.4.1.1 Fixed

Library Version
hipBLAS 0.53.0
hipCUB 2.13.0
hipFFT 1.0.10
hipSOLVER 1.6.0
hipSPARSE 2.3.3
recl 2.13.4
rocALUTION | 2.1.3
rocBLAS 2.46.0
rocFFT 1.0.20 1.0.21
rocm-cmake 0.8.0
rocPRIM 2.12.0
rocRAND 2.10.16
rocSOLVER 3.20.0
rocSPARSE 2.4.0
rocThrust 2.17.0
rocWMMA 0.9
Tensile 4.35.0

e Removed source directory from rocm_ install targets call to prevent installation of rocfft.h in an un-

intended location.

8.9 ROCm 5.4.2

8.9.1 Deprecations and Warnings

8.9.1.1 HIP Perl Scripts Deprecation

The hipcc and hipconfig Perl scripts are deprecated. In a future release, compiled binaries will be available
as hipcc.bin and hipconfig.bin as replacements for the Perl scripts.

Note

There will be a transition period where the Perl scripts and compiled binaries are available
before the scripts are removed. There will be no functional difference between the Perl scripts
and their compiled binary counterpart. No user action is required. Once these are available,
users can optionally switch to hipce.bin and hipconfig.bin. The hipcc/hipconfig soft link will
be assimilated to point from hipcc/hipconfig to the respective compiled binaries as the default

option.

8.9. ROCm 5.4.2

135

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.4.3
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.4.3
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.4.3

ROCm Documentation, Release 5.7.1

8.9.1.2 hipcc Options Deprecation

The following hipcc options are being deprecated and will be removed in a future release:

e The --amdgpu-target option is being deprecated, and user must use the —offload-arch option to specify

the GPU architecture.

o The --amdhsa-code-object-version option is being deprecated. Users can use the Clang/LLVM option

-mllvm -mcode-object-version to debug issues related to code object versions.

e The --hipce-func-supp/--hipce-no-func-supp options are being deprecated, as the function calls are
already supported in production on AMD GPUs.

8.9.2 Known Issues

Under certain circumstances typified by high register pressure, users may encounter a compiler abort with

one of the following error messages:

. error: unhandled SGPR spill to memory
. cannot scavenge register without an emergency spill slot!
. error: ran out of registers during register allocation

This is a known issue and will be fixed in a future release.

8.9.3 Library Changes in ROCM 5.4.2

Library Version
hipBLAS 0.53.0
hipCUB 2.13.0
hipFFT 1.0.10
hipSOLVER 1.6.0
hipSPARSE | 2.3.3
rccl 2.13.4
rocALUTION | 2.1.3
rocBLAS 2.46.0
rocFFT 1.0.20
rocm-cmake 0.8.0
rocPRIM 2.12.0
rocRAND 2.10.16
rocSOLVER 3.20.0
rocSPARSE 2.4.0
rocThrust 2.17.0
rocWMMA 0.9
Tensile 4.35.0

136

Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.4.2
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.4.2
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.4.2

ROCm Documentation, Release 5.7.1

8.10 ROCm 5.4.1

8.10.1 What’s New in This Release

8.10.1.1 HIP Enhancements

The ROCm v5.4.1 release consists of the following new HIP API:

8.10.1.1.1 New HIP API - hipLaunchHostFunc

The following new HIP API is introduced in the ROCm v5.4.1 release.
Note

This is a pre-official version (beta) release of the new APIs.

hipError_t hipLaunchHostFunc(hipStream_ t stream, hipHostFn_ t fn, void* userData);

This swaps the stream capture mode of a thread.

@param [in] mode - Pointer to mode value to swap with the current mode

This parameter returns #hipSuccess, #hipErrorlnvalidValue.

For more information, refer to the HIP API documentation at /bun-
dle/HIP__API Guide/page/modules.html.

8.10.2 Deprecations and Warnings

8.10.2.1 HIP Perl Scripts Deprecation

The hipcc and hipconfig Perl scripts are deprecated. In a future release, compiled binaries will be available
as hipcc.bin and hipconfig.bin as replacements for the Perl scripts.

Note

There will be a transition period where the Perl scripts and compiled binaries are available
before the scripts are removed. There will be no functional difference between the Perl scripts
and their compiled binary counterpart. No user action is required. Once these are available,
users can optionally switch to hipce.bin and hipconfig.bin. The hipcc/hipconfig soft link will
be assimilated to point from hipcc/hipconfig to the respective compiled binaries as the default
option.

8.10.3 IFWI Fixes

These defects were identified and documented as known issues in previous ROCm releases and are fixed in
this release. AMD Instinct™ MI200 Firmware IFWI Maintenance Update #3

This IFWTI release fixes the following issue in AMD Instinct™ MI210/MI250 Accelerators.

After prolonged periods of operation, certain MI200 Instinct™ Accelerators may perform in a degraded way
resulting in application failures.

In this package, AMD delivers a new firmware version for MI200 GPU accelerators and a firmware installation
tool — AMD FW FLASH 1.2.

8.10. ROCm 5.4.1 137

ROCm Documentation, Release 5.7.1

GPU Production Part Number | SKU IFWI Name
MI210 | 113-D673XX D67302 | D6730200V.110
MI210 | 113-D673XX D67301 | D6730100V.073
MI250 | 113-D652XX D65209 | D6520900.073
MI250 | 113-D652XX D65210 | D6521000.073

Instructions on how to download and apply MI200 maintenance updates are available at:

https://www.amd.com/en/support/server-accelerators/amd-instinct /amd-instinct-mi-series /
amd-instinct-mi210

8.10.3.1 AMD Instinct™ MI200 SRIOV Virtualization Support

Maintenance update #3, combined with ROCm 5.4.1, now provides SRIOV virtualization support for all
AMD Instinct™ MI200 devices.

8.10.4 Library Changes in ROCM 5.4.1

Library Version
hipBLAS 0.53.0
hipCUB 2.13.0
hipFFT 1.0.10

hipSOLVER | 1.6.0
hipSPARSE | 2.3.3

recl 2.13.4
rocALUTION | 2.1.3
rocBLAS 2.46.0
rocFFT 1.0.19 1.0.20
rocm-cmake 0.8.0
rocPRIM 2.12.0
rocRAND 2.10.16

rocSOLVER 3.20.0
rocSPARSE 2.4.0

rocThrust 2.17.0
rocWMMA 0.9
Tensile 4.35.0

8.10.4.1 rocFFT 1.0.20

rocFFT 1.0.20 for ROCm 5.4.1

138 Chapter 8. Changelog

https://www.amd.com/en/support/server-accelerators/amd-instinct/amd-instinct-mi-series/amd-instinct-mi210
https://www.amd.com/en/support/server-accelerators/amd-instinct/amd-instinct-mi-series/amd-instinct-mi210
https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.4.1
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.4.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.4.1

ROCm Documentation, Release 5.7.1

8.10.4.1.1 Fixed

e Fixed incorrect results on strided large 1D FF'Ts where batch size does not equal the stride.

8.11 ROCm 5.4.0

8.11.1 What’s New in This Release

8.11.1.1 HIP Enhancements

The ROCm v5.4 release consists of the following HIP enhancements:
8.11.1.1.1 Support for Wall Clock64

A new timer function wall_clock64() is supported, which returns wall clock count at a constant frequency
on the device.

long long int wall clock64();

It returns wall clock count at a constant frequency on the device, which can be queried via HIP API with
the hipDeviceAttributeWallClockRate attribute of the device in the HIP application code.

Example:

int wallClkRate = 0; //in kilohertz
+HIPCHECK (hipDeviceGet Attribute(&wallClkRate, hipDeviceAttributeWallClockRate, deviceld));

Where hipDeviceAttributeWallClockRate is a device attribute.
Note

The wall clock frequency is a per-device attribute.

8.11.1.1.2 New Registry Added for GPU_MAX HW_QUEUES

The GPU_MAX_HW_ QUEUES registry defines the maximum number of independent hardware queues
allocated per process per device.

The environment variable controls how many independent hardware queues HIP runtime can create per
process, per device. If the application allocates more HIP streams than this number, then the HIP runtime
reuses the same hardware queues for the new streams in a round-robin manner.

Note

This maximum number does not apply to hardware queues created for CU-masked HIP streams
or cooperative queues for HIP Cooperative Groups (there is only one queue per device).

For more details, refer to the HIP Programming Guide.

8.11. ROCm 5.4.0 139

ROCm Documentation, Release 5.7.1

8.11.1.2 New HIP APIs in This Release

The following new HIP APIs are available in the ROCm v5.4 release.
Note

This is a pre-official version (beta) release of the new APIs.

8.11.1.2.1 Error Handling

hipError_ t hipDrvGetErrorName(hipError_t hipError, const char** errorString);

This returns HIP errors in the text string format.

hipError_t hipDrvGetErrorString(hipError_t hipError, const char** errorString);

This returns text string messages with more details about the error.

For more information, refer to the HIP API Guide.

8.11.1.2.2 HIP Tests Source Separation

With ROCm v5.4, a separate GitHub project is created at
https://github.com/ROCm-Developer-Tools/hip-tests
This contains HIP catch2 tests and samples, and new tests will continue to develop.

In future ROCm releases, catch2 tests and samples will be removed from the HIP project.

8.11.2 OpenMP Enhancements

This release consists of the following OpenMP enhancements:
e Enable new device RTL in libomptarget as default.

e New flag -fopenmp-target-fast to imply -fopenmp-target-ignore-env-vars
-fopenmp-assume-no-thread-state -fopenmp-assume-no-nested-parallelism.

e Support for the collapse clause and non-unit stride in cases where the No-Loop specialized kernel is
generated.

e Initial implementation of optimized cross-team sum reduction for float and double type scalars.

e Pool-based optimization in the OpenMP runtime to reduce locking during data transfer.

8.11.3 Deprecations and Warnings

8.11.3.1 HIP Perl Scripts Deprecation

The hipcc and hipconfig Perl scripts are deprecated. In a future release, compiled binaries will be available
as hipcc.bin and hipconfig.bin as replacements for the Perl scripts.

140 Chapter 8. Changelog

https://github.com/ROCm-Developer-Tools/hip-tests

ROCm Documentation, Release 5.7.1

Note

There will be a transition period where the Perl scripts and compiled binaries are available
before the scripts are removed. There will be no functional difference between the Perl scripts
and their compiled binary counterpart. No user action is required. Once these are available,
users can optionally switch to hipcc.bin and hipconfig.bin. The hipcc/hipconfig soft link will
be assimilated to point from hipce/hipconfig to the respective compiled binaries as the default
option.

8.11.3.1.1 Linux Filesystem Hierarchy Standard for ROCm

ROCm packages have adopted the Linux foundation filesystem hierarchy standard in this release to ensure
ROCm components follow open source conventions for Linux-based distributions. While moving to a new
filesystem hierarchy, ROCm ensures backward compatibility with its 5.1 version or older filesystem hierarchy.
See below for a detailed explanation of the new filesystem hierarchy and backward compatibility.

8.11.3.1.2 New Filesystem Hierarchy

The following is the new filesystem hierarchy:

/opt/rocm-<ver>
| --bin
| --All externally exposed Binaries
| --libexec
| --<component>
| -- Component specific private non-ISA executables (architecture independent)
| --include
| -- <component>
| --<header files>
| --lib
| --lib<soname>.so -> lib<soname>.so.major -> lib<soname>>.so.major.minor.patch
(public libraries linked with application)
| --<component> (component specific private library, executable data)
| --<cmake>
| --components
| --<component>.config.cmake
| --share
| --html/<component>/* html
| -info/<component>/*.[pdf, md, txt]
| --man
| --doc
| -<component>
| --<licenses>
| --<component>
| --<misc files> (arch independent non-executable)
| --samples

Note

ROCm will not support backward compatibility with the v5.1(old) file system hierarchy in its
next major release.

For more information, refer to https://refspecs.linuxfoundation.org/fhs.shtml.

8.11. ROCm 5.4.0 141

https://refspecs.linuxfoundation.org/fhs.shtml

ROCm Documentation, Release 5.7.1

8.11.3.1.3 Backward Compatibility with Older Filesystems

ROCm has moved header files and libraries to its new location as indicated in the above structure and
included symbolic-link and wrapper header files in its old location for backward compatibility.

Note

ROCm will continue supporting backward compatibility until the next major release.

8.11.3.1.4 Wrapper header files

Wrapper header files are placed in the old location (/opt/rocm-xxx/<component>/include) with a warning
message to include files from the new location (/opt/rocm-xxx/include) as shown in the example below:

// Code snippet from hip_ runtime.h
#pragma message “This file is deprecated. Use file from include path /opt/rocm-ver/include/ and prefix with hip”.
#include 7hip/hip_ runtime.h”

The wrapper header files’ backward compatibility deprecation is as follows:
o F#pragma message announcing deprecation — ROCm v5.2 release
e #pragma message changed to #warning — Future release
e F#warning changed to #error — Future release

e Backward compatibility wrappers removed — Future release

8.11.3.1.5 Library files

Library files are available in the /opt/rocm-xxx/lib folder. For backward compatibility, the old library
location (/opt/rocm-xxx/<component>/lib) has a soft link to the library at the new location.

Example:

$ 1s -1 /opt/rocm/hip/lib/

total 4

drwxr-xr-x 4 root root 4096 May 12 10:45 cmake

lrwxrwxrwx 1 root root 24 May 10 23:32 libamdhip64.so -> ../../lib/libamdhip64.so

8.11.3.1.6 CMake Config files

All CMake configuration files are available in the /opt/rocm-xxx/lib/cmake/<component> folder. For
backward compatibility, the old CMake locations (/opt/rocm-xxx/<component>/lib/cmake) consist of a
soft link to the new CMake config.

Example:

$ 1s -1 /opt/rocm/hip/lib/cmake /hip/
total 0
lrwxrwxrwx 1 root root 42 May 10 23:32 hip-config.cmake -> ../../../../lib/cmake/hip/hip-config.cmake

142 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.11.4 Fixed Defects

The following defects are fixed in this release.

These defects were identified and documented as known issues in previous ROCm releases and are fixed in
this release.

8.11.4.1 Memory Allocated Using hipHostMalloc() with Flags Did Not Exhibit Fine-Grain Behavior

8.11.4.1.1 Issue

The test was incorrectly using the hipDeviceAttributePageableMemoryAccess device attribute to determine
coherent support.

8.11.4.1.2 Fix

hipHostMalloc() allocates memory with fine-grained access by default when the environment variable
HIP_HOST_COHERENT=1 is used.

For more information, refer to HIP Runtime API Reference.
8.11.4.2 SoftHang with hipStreamWithCUMask test on AMD Instinct™

8.11.4.2.1 Issue

On GFX10 GPUs, kernel execution hangs when it is launched on streams created using hipStreamWith-
CUMask.

8.11.4.2.2 Fix

On GFX10 GPUs, each workgroup processor encompasses two compute units, and the compute units must
be enabled as a pair. The hipStreamWithCUMask API unit test cases are updated to set compute unit mask
(cuMask) in pairs for GFX10 GPUs.

8.11.4.3 ROCm Tools GPU IDs

The HIP language device IDs are not the same as the GPU IDs reported by the tools. GPU IDs are globally
unique and guaranteed to be consistent across APIs and processes.

GPU IDs reported by ROCTracer and ROCProfiler or ROCm Tools are HSA Driver Node ID of that GPU,
as it is a unique ID for that device in that particular node.

8.11. ROCm 5.4.0 143

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/index.html

ROCm Documentation, Release 5.7.1

8.11.5 Library Changes in ROCM 5.4.0

8.11.5.1 hipBLAS 0.53.0

hipBLAS 0.53.0 for ROCm 5.4.0

8.11.5.1.1 Added

Library Version
hipBLAS 0.52.0 0.53.0
hipCUB 2.12.0 2.13.0
hipFFT 1.0.9 1.0.10
hipSOLVER 1.5.0 1.6.0
hipSPARSE 2.3.1 2.3.3
rcel 2.12.10 2.13.4
rocALUTION | 2.1.0 2.1.3
rocBLAS 2.45.0 2.46.0
rocFFT 1.0.18 1.0.19
rocm-cmake 0.8.0

rocPRIM 2.11.0 2.12.0
rocRAND 2.10.15 2.10.16
rocSOLVER 3.19.0 3.20.0
rocSPARSE 2.2.0 2.4.0
rocThrust 2.16.0 2.17.0
rocWMMA 0.8 0.9
Tensile 4.34.0 4.35.0

e Allow for selection of int8 datatype

o Added support for hipblasXgels and hipblasXgelsStridedBatched operations (with s,d,c,z precisions),
only supported with rocBLAS backend

o Added support for hipblasXgelsBatched operations (with s,d,c,z precisions)

8.11.5.2 hipCUB 2.13.0

hipCUB 2.13.0 for ROCm 5.4.0

8.11.5.2.1 Added

e CMake functionality to improve build parallelism of the test suite that splits compilation units by
function or by parameters.

e New overload for BlockAdjacentDifference::SubtractLeftPartialTile that takes a predecessor item.

144 Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.4.0
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.4.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.4.0

ROCm Documentation, Release 5.7.1

8.11.5.2.2 Changed

e Improved build parallelism of the test suite by splitting up large compilation units for DeviceRadixSort,
DeviceSegmentedRadixSort and DeviceSegmentedSort.

« CUB backend references CUB and thrust version 1.17.1.
8.11.5.3 hipFFT 1.0.10

hipFFT 1.0.10 for ROCm 5.4.0

8.11.5.3.1 Added

e Added hipfftExtPlanScaleFactor API to efficiently multiply each output element of a FFT by a given
scaling factor. Result scaling must be supported in the backend FFT library.

8.11.5.3.2 Changed

e When hipFFT is built against the rocFFT backend, rocFFT 1.0.19 or higher is now required.

8.11.5.4 hipSOLVER 1.6.0

hipSOLVER 1.6.0 for ROCm 5.4.0

8.11.5.4.1 Added

e Added compatibility-only functions
— gesvdaStridedBatched

* hipsolverDnSgesvdaStridedBatched_ bufferSize, hipsolverDnDgesvdaStrided-
Batched_ bufferSize, hipsolverDnCgesvdaStridedBatched bufferSize, hipsolverDnZgesv-
daStridedBatched_ bufferSize

* hipsolverDnSgesvdaStridedBatched, hipsolverDnDgesvdaStridedBatched, hipsolverDnCgesv-
daStridedBatched, hipsolverDnZgesvdaStridedBatched

8.11.5.5 hipSPARSE 2.3.3

hipSPARSE 2.3.3 for ROCm 5.4.0

8.11. ROCm 5.4.0 145

ROCm Documentation, Release 5.7.1

8.11.5.5.1 Added

e Added hipsparseCsr2cscEx2_ bufferSize and hipsparseCsr2cscEx2 routines

8.11.5.5.2 Changed

« HIPSPARSE ORDER_COLUMN has been renamed to HIPSPARSE ORDER_COL to match cus-
parse

8.11.5.6 rccl 2.13.4

RCCL 2.13.4 for ROCm 5.4.0

8.11.5.6.1 Changed

e Compatibility with NCCL 2.13.4
e Improvements to RCCL when running with hipGraphs

« RCCL_ENABLE_HIPGRAPH environment variable is no longer necessary to enable hipGraph sup-
port

e Minor latency improvements

8.11.5.6.2 Fixed

e Resolved potential memory access error due to asynchronous memset

8.11.5.7 rocALUTION 2.1.3

rocALUTION 2.1.3 for ROCm 5.4.0

8.11.5.7.1 Added

e Added build support for Navi31l and Navi33

e Added support for non-squared global matrices

8.11.5.7.2 Improved

e Fixed a memory leak in MatrixMult on HIP backend

e Global structures can now be used with a single process

146 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.11.

5.7.3 Changed

Switched GTest death test style to ‘threadsafe’
GlobalVector::GetGhostSize() is deprecated and will be removed

ParallelManager::GetGlobalSize(), ParallelManager::GetLocalSize(), ParallelManager::SetGlobalSize()
and ParallelManager::SetLocalSize() are deprecated and will be removed

Vector::GetGhostSize() is deprecated and will be removed

Multigrid::SetOperatorFormat(unsigned int) is deprecated and will be removed, use Multi-
grid::SetOperatorFormat (unsigned int, int) instead

RugeStuebenAMG::SetCouplingStrength(ValueType) is deprecated and will be removed, use Set-
StrengthThreshold(float) instead

8.11.5.8 rocBLAS 2.46.0

rocBLAS 2.46.0 for ROCm 5.4.0

8.11.5.8.1 Added

e client smoke test dataset added for quick validation wusing command rocblas-test —yaml

rocblas_ smoke.yaml

o Added stream order device memory allocation as a non-default beta option.

8.11.5.8.2 Optimized

e Improved trsm performance for small sizes by using a substitution method technique

o Improved syr2k and her2k performance significantly by using a block-recursive algorithm

8.11.

5.8.3 Changed

Level 2, Level 1, and Extension functions: argument checking when the handle is set to
rocblas_pointer__mode_host now returns the status of rocblas_status_invalid pointer only for point-
ers that must be dereferenced based on the alpha and beta argument values. With handle mode
rocblas_ pointer__mode_ device only pointers that are always dereferenced regardless of alpha and beta
values are checked and so may lead to a return status of rocblas_ status_ invalid_ pointer. This improves
consistency with legacy BLAS behaviour.

Add variable to turn on/off iecel6/ieee32 tests for mixed precision gemm
Allow hipBLAS to select int8 datatype
Disallow B == C && 1db != ldc in rocblas_xtrmm_ outofplace

8.11.

ROCm 5.4.0 147

ROCm Documentation, Release 5.7.1

8.11.5.8.4 Fixed

« FORTRAN interfaces generalized for FORTRAN compilers other than gfortran
e fix for trsm_ strided_batched rocblas-bench performance gathering

e Fix for rocm-smi path in commandrunner.py script to match ROCm 5.2 and above

8.11.5.9 rocFFT 1.0.19
rocFFT 1.0.19 for ROCm 5.4.0
8.11.5.9.1 Optimizations

e Optimized some strided large 1D plans.

8.11.5.9.2 Added

o Added rocfft plan_ description_set_scale factor API to efficiently multiply each output element of a
FFT by a given scaling factor.

e Created a rocfft_ kernel cache.db file next to the installed library. SBCC kernels are moved to this
file when built with the library, and are runtime-compiled for new GPU architectures.

e Added gfx1100 and gfx1102 to default AMDGPU__TARGETS.

8.11.5.9.3 Changed

e Moved runtime compilation cache to in-memory by default. A default on-disk cache can encounter
contention problems on multi-node clusters with a shared filesystem. rocFFT can still be told to use
an on-disk cache by setting the ROCFFT_RTC_CACHE_PATH environment variable.

8.11.5.10 rocPRIM 2.12.0

rocPRIM 2.12.0 for ROCm 5.4.0

8.11.5.10.1 Changed

e device_ partition, device_unique, and device_reduce_by_ key now support problem sizes larger than
2732 items.

148 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.11.5.10.2 Removed

o block_sort::sort() overload for keys and values with a dynamic size. This overload was documented
but the implementation is missing. To avoid further confusion the documentation is removed until a
decision is made on implementing the function.

8.11.5.10.3 Fixed

o Fixed the compilation failure in device merge if the two key iterators don’t match.

8.11.5.11 rocRAND 2.10.16

rocRAND 2.10.16 for ROCm 5.4.0

8.11.5.11.1 Added

e MRG31K3P pseudorandom number generator based on L’Ecuyer and Touzin, 2000, “Fast combined
multiple recursive generators with multipliers of the form a = +2q +2r”.

e« LFSRI113 pseudorandom number generator based on L’Ecuyer, 1999, “Tables of maximally equidis-
tributed combined LFSR generators™.

e SCRAMBLED_SOBOL32 and SCRAMBLED_SOBOL64 quasirandom number generators. The
Scrambled Sobol sequences are generated by scrambling the output of a Sobol sequence.

8.11.5.11.2 Changed

e The mrg <distribution>_ distribution structures, which provided numbers based on
MRG32K3A, are now replaced by mrg engine_<distribution> distribution, where <
distribution> is log_normal, normal, poisson, or uniform. These structures provide numbers for
MRG31K3P (with template type rocrand_state_mrg31k3p) and MRG32K3A (with template type
rocrand__state_ mrg32k3a).

8.11.5.11.3 Fixed

e Sobol64 now returns 64 bits random numbers, instead of 32 bits random numbers. As a result, the
performance of this generator has regressed.

o Fixed a bug that prevented compiling code in C++ mode (with a host compiler) when it included the
rocRAND headers on Windows.

8.11. ROCm 5.4.0 149

ROCm Documentation, Release 5.7.1

8.11.5.12 rocSOLVER 3.20.0

rocSOLVER 3.20.0 for ROCm 5.4.0

8.11.5.12.1 Added

o Partial SVD for bidiagonal matrices:
- BDSVDX
e Partial SVD for general matrices:

— GESVDX (with batched and strided_batched versions)

8.11.5.12.2 Changed

¢ Changed ROCSOLVER_EMBED_ FMT default to ON for users building directly with CMake. This
matches the existing default when building with install.sh or rmake.py.

8.11.5.13 rocSPARSE 2.4.0

rocSPARSE 2.4.0 for ROCm 5.4.0

8.11.5.13.1 Added

o Added rocsparse_spmv__ex routine

e Added rocsparse_bsrmv__ex_analysis and rocsparse_bsrmv__ex routines
e Added csritilu0 routine

Added build support for Navi3l and Navi 33

8.11.5.13.2 Improved

e Optimization to segmented algorithm for COO SpMV by performing analysis
o Improve performance when generating random matrices.

e Fixed bug in ellmv

e Optimized bsr2csr routine

e Fixed integer overflow bugs

150 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.11.5.14 rocThrust 2.17.0

rocThrust 2.17.0 for ROCm 5.4.0

8.11.5.14.1 Added

e Updated to match upstream Thrust 1.17.0

8.11.5.15 rocWMMA 0.9

rocWMMA 0.9 for ROCm 5.4.0

8.11.5.15.1 Added

e Added gemm driver APIs for flow control builtins
e Added benchmark logging systems

o Restructured tests to follow naming convention. Added macros for test generation

8.11.5.15.2 Changed

e Changed CMake to accomodate the modified test infrastructure

e Fine tuned the multi-block kernels with and without 1ds

e Adjusted Maximum Vector Width to dWordx4 Width

o Updated Efficiencies to display as whole number percentages

o Updated throughput from GFlops/s to TFlops/s

e Reset the ad-hoc tests to use smaller sizes

o Modified the output validation to use CPU-based implementation against rocWMMA

e Modified the extended vector test to return error codes for memory allocation failures

8.11.5.16 Tensile 4.35.0

Tensile 4.35.0 for ROCm 5.4.0

8.11.5.16.1 Added

o Async DMA support for Transpose Data Layout (ThreadSeparateGlobalReadA /B)
e Option to output library logic in dictionary format

e No solution found error message for benchmarking client

o Exact K check for StoreCInUnrollExact

e Support for CGEMM + MIArchVgpr

¢ client-path parameter for using prebuilt client

8.11. ROCm 5.4.0 151

ROCm Documentation, Release 5.7.1

¢ CleanUpBuildFiles global parameter

e Debug flag for printing library logic index of winning solution
e NumWarmups global parameter for benchmarking

e Windows support for benchmarking client

e DirectToVgpr support for CGEMM

o TensileLibLogicToYaml for creating tuning configs from library logic solutions

8.11.5.16.2 Optimizations

e Put beta code and store separately if StoreCInUnroll = x4 store

e Improved performance for StoreCInUnroll + b128 store

8.11.5.16.3 Changed

e Re-enable HardwareMonitor for gfx90a

o Decision trees use MLFeatures instead of Properties

8.11.5.16.4 Fixed

o Reject DirectToVgpr + MatrixInstBM/BN > 1

 Fix benchmark timings when using warmups and/or validation

e Fix mismatch issue with DirectToVgprB + VectorWidth > 1

e Fix mismatch issue with DirectToLds + NumLoadsCoalesced > 1 + TailLoop
« Fix incorrect reject condition for Direct ToVgpr

e Fix reject condition for DirectToVgpr + MIWaveTile < VectorWidth

« Fix incorrect instruction generation with StoreCInUnroll

8.12 ROCm 5.3.3

8.12.1 Fixed Defects

8.12.1.1 Issue with rocTHRUST and rocPRIM Libraries
There was a known issue with rocTHRUST and rocPRIM libraries supporting iterator and types in ROCm
v5.3.x releases.

o thrust::merge no longer correctly supports different iterator types for keys_inputl and keys_ input2.

e rocprim::device__merge no longer correctly supports using different types for keys_inputl and
keys__input2.

This issue is resolved with the following fixes to compilation failures:

152 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

e rocPRIM: in device merge if the two key iterators do not match.

e rocTHRUST: in thrust::merge if the two key iterators do not match.

8.12.2 Library Changes in ROCM 5.3.3

Library Version
hipBLAS 0.52.0
hipCUB 2.12.0
hipFFT 1.0.9
hipSOLVER 1.5.0
hipSPARSE | 2.3.1
rccl 2.12.10
rocALUTION | 2.1.0
rocBLAS 2.45.0
rocFFT 1.0.18
rocm-cmake 0.8.0
rocPRIM 2.11.0
rocRAND 2.10.15
rocSOLVER 3.19.0
rocSPARSE 2.2.0
rocThrust 2.16.0
rocWMMA 0.8
Tensile 4.34.0

8.13 ROCm 5.3.2

8.13.1 Fixed Defects

The following known issues in ROCm v5.3.2 are fixed in this release.

8.13.1.1 Peer-to-Peer DMA Mapping Errors with SLES and RHEL

Peer-to-Peer Direct Memory Access (DMA) mapping errors on Dell systems (R7525 and R750XA) with

SLES 15 SP3/SP4 and RHEL 9.0 are fixed in this release.

Previously, running rocminfo resulted in Peer-to-Peer DMA mapping errors.

8.13.1.2 RCCL Tuning Table

The RCCL tuning table is updated for supported platforms.

8.13. ROCm 5.3.2

153

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.3.3
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.3.3
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.3.3

ROCm Documentation, Release 5.7.1

8.13.1.3 SGEMM (F32 GEMM) Routines in rocBLAS

Functional correctness failures in SGEMM (F32 GEMM) routines in rocBLAS for certain problem sizes and
ranges are fixed in this release.

8.13.2 Known Issues

This section consists of known issues in this release.

8.13.2.1 AMD Instinct™ MI200 SRIOV Virtualization Issue

There is a known issue in this ROCm v5.3 release with all AMD Instinct™ MI200 devices running within a
virtual function (VF) under SRIOV virtualization. This issue will likely impact the functionality of SRIOV-
based workloads but does not impact Discrete Device Assignment (DDA) or bare metal.

Until a fix is provided, users should rely on ROCm v5.2.3 to support their SRIOV workloads.

8.13.2.2 AMD Instinct™ MI200 Firmware Updates

Customers cannot update the Integrated Firmware Image (IFWI) for AMD Instinct™ MI200 accelerators.

An updated firmware maintenance bundle consisting of an installation tool and images specific to AMD
Instinct™ MI200 accelerators is under planning and will be available soon.

8.13.2.3 Known Issue with rocThrust and rocPRIM Libraries
There is a known known issue with rocThrust and rocPRIM libraries supporting iterator and types in ROCm
v5.3.x releases.

e thrust::merge no longer correctly supports different iterator types for keys_inputl and keys_ input2.

e rocprim::device_merge no longer correctly supports using different types for keys inputl and
keys__input2.

This issue is currently under investigation and will be resolved in a future release.

154 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.13.3 Library Changes in ROCM 5.3.2

Library Version
hipBLAS 0.52.0
hipCUB 2.12.0
hipFFT 1.0.9

hipSOLVER | 1.5.0
hipSPARSE | 2.3.1

rccl 2.12.10
rocALUTION | 2.1.0
rocBLAS 2.45.0
rocFFT 1.0.18
rocm-cmake 0.8.0
rocPRIM 2.11.0
rocRAND 2.10.15

rocSOLVER 3.19.0
rocSPARSE 2.2.0

rocThrust 2.16.0
rocWMMA 0.8
Tensile 4.34.0

8.14 ROCm 5.3.0

8.14.1 Deprecations and Warnings

8.14.1.1 HIP Perl Scripts Deprecation

The hipcc and hipconfig Perl scripts are deprecated. In a future release, compiled binaries will be available
as hipcc.bin and hipconfig.bin as replacements for the Perl scripts.

Note

There will be a transition period where the Perl scripts and compiled binaries are available
before the scripts are removed. There will be no functional difference between the Perl scripts
and their compiled binary counterpart. No user action is required. Once these are available,
users can optionally switch to hipce.bin and hipconfig.bin. The hipce/hipconfig soft link will
be assimilated to point from hipcc/hipconfig to the respective compiled binaries as the default
option.

8.14.1.2 Linux Filesystem Hierarchy Standard for ROCm

ROCm packages have adopted the Linux foundation filesystem hierarchy standard in this release to ensure
ROCm components follow open source conventions for Linux-based distributions. While moving to a new
filesystem hierarchy, ROCm ensures backward compatibility with its 5.1 version or older filesystem hierarchy.
See below for a detailed explanation of the new filesystem hierarchy and backward compatibility.

8.14. ROCm 5.3.0 155

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.3.2
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.3.2
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.3.2

ROCm Documentation, Release 5.7.1

8.14.1.2.1 New Filesystem Hierarchy

The following is the new filesystem hierarchy:

/opt/rocm-<ver>
| --bin
| --All externally exposed Binaries
| --libexec
| --<component>
| -- Component specific private non-ISA executables (architecture independent)
| --include
| -- <component>
| --<header files>
| -lib
| --lib<soname>.so -> lib<soname>.so.major -> lib<soname>>.so.major.minor.patch
(public libraries linked with application)
| --<component> (component specific private library, executable data)
| --<cmake>
| --components
| --<component>.config.cmake
| --share
| --html/<component>/*.html
| -info/<component>/*.[pdf, md, txt]
| --man
| --doc
| -<component>
| --<licenses>
| --<component>
| --<misc files> (arch independent non-executable)
| --samples

Note

ROCm will not support backward compatibility with the v5.1(old) file system hierarchy in its
next major release.

For more information, refer to https://refspecs.linuxfoundation.org/fhs.shtml.

8.14.1.2.2 Backward Compatibility with Older Filesystems

ROCm has moved header files and libraries to its new location as indicated in the above structure and
included symbolic-link and wrapper header files in its old location for backward compatibility.

Note

ROCm will continue supporting backward compatibility until the next major release.

156 Chapter 8. Changelog

https://refspecs.linuxfoundation.org/fhs.shtml

ROCm Documentation, Release 5.7.1

8.14.1.2.3 Wrapper header files

Wrapper header files are placed in the old location (/opt/rocm-xxx/<component>/include) with a warning
message to include files from the new location (/opt/rocm-xxx/include) as shown in the example below:

// Code snippet from hip_ runtime.h
#pragma message “This file is deprecated. Use file from include path /opt/rocm-ver/include/ and prefix with hip”.
#include “hip/hip_ runtime.h”

The wrapper header files’ backward compatibility deprecation is as follows:
e F#pragma message announcing deprecation — ROCm v5.2 release
e #pragma message changed to #warning — Future release
e #warning changed to #error — Future release

e Backward compatibility wrappers removed — Future release

8.14.1.2.4 Library files

Library files are available in the /opt/rocm-xxx/lib folder. For backward compatibility, the old library
location (/opt/rocm-xxx/<component>/lib) has a soft link to the library at the new location.

Example:

$ 1s -1 /opt/rocm/hip/lib/

total 4

drwxr-xr-x 4 root root 4096 May 12 10:45 cmake

Irwxrwxrwx 1 root root 24 May 10 23:32 libamdhip64.so -> ../../lib/libamdhip64.so

8.14.1.2.5 CMake Config files

All CMake configuration files are available in the /opt/rocm-xxx/lib/cmake/<component> folder. For
backward compatibility, the old CMake locations (/opt/rocm-xxx/<component>/lib/cmake) consist of a
soft link to the new CMake config.

Example:

$ Is -1 /opt/rocm/hip/lib/cmake/hip/
total O
Irwxrwxrwx 1 root root 42 May 10 23:32 hip-config.cmake -> ../../../../lib/cmake/hip /hip-config.cmake

8.14.2 Fixed Defects

The following defects are fixed in this release.

These defects were identified and documented as known issues in previous ROCm releases and are fixed in
the ROCm v5.3 release.

8.14. ROCm 5.3.0 157

ROCm Documentation, Release 5.7.1

8.14.2.1 Kernel produces incorrect results with ROCm 5.2

User code did not initialize certain data constructs, leading to a correctness issue. A strict reading of the
C++ standard suggests that failing to initialize these data constructs is undefined behavior. However, a
special case was added for a specific compiler builtin to handle the uninitialized data in a defined manner.

The compiler fix consists of the following patches:

e A new noundef attribute is added. This attribute denotes when a function call argument or return val
may never contain uninitialized bits. For more information, see https://reviews.llvin.org/D81678

o The application of this attribute was refined such that it was not added to a specific compiler builtin
where the compiler knows that inactive lanes do not impact program execution.

For more information, see https://github.com/RadeonOpenCompute/llvin-project /commit /
accf36¢58409268calf216cdfbad812ba97ceccd.

8.14.3 Known Issues

This section consists of known issues in this release.

8.14.3.1 Issue with OpenMP-Extras Package Upgrade

The openmp-extras package has been split into runtime (openmp-extras-runtime) and dev
(openmp-extras-devel) packages. This change has broken the upgrade support for the openmp-extras
package in RHEL/SLES. An available workaround in RHEL is to use the following command for upgrades:

sudo yum upgrade rocm-language-runtime --allowerasing

An available workaround in SLES is to use the following command for upgrades:

zypper update --force-resolution <meta-package>

8.14.3.2 AMD Instinct™ MI200 SRIOV Virtualization Issue

There is a known issue in this ROCm v5.3 release with all AMD Instinct™ MI200 devices running within a
virtual function (VF) under SRIOV virtualization. This issue will likely impact the functionality of SRIOV-
based workloads, but does not impact Discrete Device Assignment (DDA) or Bare Metal.

Until a fix is provided, users should rely on ROCm v5.2.3 to support their SRIOV workloads.

8.14.3.3 System Crash when IMMOU is Enabled
If IOMMU is enabled in SBIOS and ROCm is installed, the system may report the following failure or errors
when running workloads such as bandwidth test, clinfo, and HelloWord.cl and cause a system crash.

o 10 PAGE FAULT

¢ IRQ remapping does not support X2APIC mode

o NMI error

Workaround: To avoid the system crash, add amd_iommu=on iommu=pt as the kernel bootparam, as
indicated in the warning message.

158 Chapter 8. Changelog

https://reviews.llvm.org/D81678
https://github.com/RadeonOpenCompute/llvm-project/commit/accf36c58409268ca1f216cdf5ad812ba97ceccd
https://github.com/RadeonOpenCompute/llvm-project/commit/accf36c58409268ca1f216cdf5ad812ba97ceccd

ROCm Documentation, Release 5.7.1

8.14.4 Library Changes in ROCM 5.3.0

8.14.4.1 hipBLAS 0.52.0

hipBLAS 0.52.0 for ROCm 5.3.0

8.14.4.1.1 Added

Library Version
hipBLAS 0.51.0 0.52.0
hipCUB 2.11.1 2.12.0
hipFFT 1.0.8 1.0.0
hipSOLVER 1.4.0 1.5.0
hipSPARSE 2.2.0 2.3.1
recl 2.12.10
rocALUTION | 2.0.3 2.1.0
rocBLAS 2.44.0 2.45.0
rocFFT 1.0.17 1.0.18
rocm-cmake 0.8.0
rocPRIM 2.10.14 2.11.0
rocRAND 2.10.14 2.10.15
rocSOLVER 3.18.0 3.19.0
rocSPARSE 2.2.0
rocThrust 2.15.0 2.16.0
rocWMMA 0.7 0.8
Tensile 4.33.0 4.34.0

e Added —cudapath option to install.sh to allow user to specify which cuda build they would like to use.

e Added —installcuda option to install.sh to install cuda via a package manager. Can be used with new
—installcudaversion option to specify which version of cuda to install.

8.14.4.1.2 Fixed

e Fixed #includes to support a compiler version.

o Fixed client dependency support in install.sh

8.14.4.2 hipCUB 2.12.0

hipCUB 2.12.0 for ROCm 5.3.0

8.14. ROCm 5.3.0

159

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.3.0
https://github.com/RadeonOpenCompute/rocm-cmake/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.3.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.3.0

ROCm Documentation, Release 5.7.1

8.14.4.2.1 Added

e UniqueByKey device algorithm

e SubtractLeft, SubtractLeftPartialTile, SubtractRight, SubtractRightPartialTile overloads in BlockAd-
jacentDifference.

— The old overloads (FlagHeads, FlagTails, FlagHeadsAndTails) are deprecated.
o DeviceAdjacentDifference algorithm.

e Extended benchmark suite of DeviceHistogram, DeviceScan, DevicePartition, DeviceReduce, Device-
SegmentedReduce, DeviceSegmentedRadixSort, DeviceRadixSort, DeviceSpmv, DeviceMergeSort, De-
viceSegmentedSort

8.14.4.2.2 Changed

e Obsolated type traits defined in util_type.hpp. Use the standard library equivalents instead.
e CUB backend references CUB and thrust version 1.16.0.
e DeviceRadixSort’s num__items parameter’s type is now templated instead of being an int.
— If an integral type with a size at most 4 bytes is passed (i.e. an int), the former logic applies.

— Otherwise the algorithm uses a larger indexing type that makes it possible to sort input data over
2%*32 elements.

e Improved build parallelism of the test suite by splitting up large compilation units

8.14.4.3 hipFFT 1.0.9

hipFFT 1.0.9 for ROCm 5.3.0

8.14.4.3.1 Changed

e Clean up build warnings.
e GNUlInstall Dir enhancements.
e Requires gtest 1.11.

8.14.4.4 hipSOLVER 1.5.0

hipSOLVER 1.5.0 for ROCm 5.3.0

160 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.14.4.4.1 Added

e Added functions
— syevj

* hipsolverSsyevj_ bufferSize, hipsolverDsyevj bufferSize, hipsolverCheevj_ bufferSize, hip-
solverZheevj_ bufferSize

* hipsolverSsyevj, hipsolverDsyevj, hipsolverCheevj, hipsolverZheevj
— syevjBatched

* hipsolverSsyevjBatched_ bufferSize, hipsolverDsyevjBatched_bufferSize, hipsolverCheevj-
Batched_ bufferSize, hipsolverZheevjBatched_ bufferSize

* hipsolverSsyevjBatched, hipsolverDsyevjBatched, hipsolverCheevjBatched, hipsolverZheevj-
Batched

~ Sygv]

* hipsolverSsygvj_ bufferSize, hipsolverDsygvj bufferSize, hipsolverChegvj_bufferSize, hip-
solverZhegvj_ bufferSize

* hipsolverSsygvj, hipsolverDsygvj, hipsolverChegvj, hipsolverZhegvj
e Added compatibility-only functions
— syevdx/heevdx

* hipsolverDnSsyevdx__bufferSize, hipsolverDnDsyevdx_ bufferSize, hipsolverD-
nCheevdx_ bufferSize, hipsolverDnZheevdx_ bufferSize

* hipsolverDnSsyevdx, hipsolverDnDsyevdx, hipsolverDnCheevdx, hipsolverDnZheevdx
— sygvdx/hegvdx

* hipsolverDnSsygvdx_ bufferSize, hipsolverDnDsygvdx_ bufferSize, hipsolverD-
nChegvdx_ bufferSize, hipsolverDnZhegvdx_ bufferSize

* hipsolverDnSsygvdx, hipsolverDnDsygvdx, hipsolverDnChegvdx, hipsolverDnZhegvdx

e Added —mem_ query option to hipsolver-bench, which will print the amount of device memory
workspace required by the function.

8.14.4.4.2 Changed

o The rocSOLVER backend will now set info to zero if rocSOLVER, does not reference info. (Applies to
orgbr/ungbr, orgqr/ungqr, orgtr/ungtr, ormqr/unmqr, ormtr/unmtr, gebrd, geqrf, getrs, potrs, and
sytrd/hetrd).

e gesvdj will no longer require extra workspace to transpose V when jobz is HIP-
SOLVER_ EIG _MODE VECTOR and econ is 1.

8.14. ROCm 5.3.0 161

ROCm Documentation, Release 5.7.1

8.14.4.4.3 Fixed

e Fixed Fortran return value declarations within hipsolver_ module.f90

e Fixed gesvdj_bufferSize returning HIPSOLVER,_STATUS_INVALID_VALUE when jobz is HIP-

SOLVER_EIG_MODE NOVECTOR and 1 <=1dv < n

e Fixed gesvdj returning HIPSOLVER_STATUS_INVALID_VALUE when

SOLVER_EIG_MODE_VECTOR, econ is 1, and m < n

8.14.4.5 hipSPARSE 2.3.1

hipSPARSE 2.3.1 for ROCm 5.3.0

8.14.4.5.1 Added

e Add SpMM and SpMM batched for CSC format

8.14.4.6 rocALUTION 2.1.0

rocALUTION 2.1.0 for ROCm 5.3.0

8.14.4.6.1 Added

e Benchmarking tool

e Ext+I Interpolation with sparsify strategies added for RS-AMG

8.14.4.6.2 Improved

o ParallelManager

8.14.4.7 rocBLAS 2.45.0

rocBLAS 2.45.0 for ROCm 5.3.0

8.14.4.7.1 Added

jobz

is

HIP-

 install.sh option —upgrade_ tensile venv_ pip to upgrade Pip in Tensile Virtual Environment. The

corresponding CMake option is TENSILE_VENV__UPGRADE_ PIP.

« install.sh option —relocatable or -r adds rpath and removes Idconf entry on rocBLAS build.

« install.sh option —lazy-library-loading to enable on-demand loading of tensile library files at runtime

to speedup rocBLAS initialization.
e Support for RHEL9 and CS9.

e Added Numerical checking routine for symmetric, Hermitian, and triangular matrices, so that they
could be checked for any numerical abnormalities such as NaN, Zero, infinity and denormal value.

162

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.14.4.7.2 Optimizations

e trmm_ outofplace performance improvements for all sizes and data types using block-recursive algo-
rithm.

e herkx performance improvements for all sizes and data types using block-recursive algorithm.
o syrk/herk performance improvements by utilising optimised syrkx/herkx code.

o symm/hemm performance improvements for all sizes and datatypes using block-recursive algorithm.

8.14.4.7.3 Changed

o Unifying library logic file names: affects HBH (->HHS BH), BBH (->BBS_BH), 4xi8BH (-
>4xi8I1__BH). All HPA types are using the new naming convention now.

e Level 3 function argument checking when the handle is set to rocblas_ pointer _mode__host now returns
the status of rocblas_ status_ invalid_ pointer only for pointers that must be dereferenced based on the
alpha and beta argument values. With handle mode rocblas_ pointer__mode_ device only pointers that
are always dereferenced regardless of alpha and beta values are checked and so may lead to a return
status of rocblas_ status_ invalid_ pointer. This improves consistency with legacy BLAS behaviour.

e Level 1, 2, and 3 function argument checking for enums is now more rigorously matching legacy BLAS
so returns rocblas_ status__invalid_ value if arguments do not match the accepted subset.

e Add quick-return for internal trmm and gemm template functions.
e Moved function block sizes to a shared header file.
e Level 1, 2, and 3 functions use rocblas_ stride datatype for offset.

e Modified the matrix and vector memory allocation in our test infrastructure for all Level 1, 2, 3 and
BLAS EX functions.

o Added specific initialization for symmetric, Hermitian, and triangular matrix types in our test infras-
tructure.

e Added NaN tests to the test infrastructure for the rest of Level 3, BLAS_EX functions.

8.14.4.7.4 Fixed

o Improved logic to #include <filesystem> vs <experimental/filesystem>.
« install.sh -s option to build rocblas as a static library.

e dot function now sets the device results asynchronously for N <= 0

8.14.4.7.5 Deprecated

e is_ complex helper is now deprecated. Use rocblas_is_complex instead.

e The enum truncate t and the value truncate is now deprecated and will removed from the ROCm
release 6.0. It is replaced by rocblas_ truncate_t and rocblas_ truncate, respectively. The new enum
rocblas_ truncate_ t and the value rocblas_ truncate could be used from this ROCm release for an easy
transition.

8.14. ROCm 5.3.0 163

ROCm Documentation, Release 5.7.1

8.14.4.7.6 Removed
« install.sh options —hip-clang , —no-hip-clang, —merge-files, —no-merge-files are removed.
8.14.4.8 rocFFT 1.0.18
rocFFT 1.0.18 for ROCm 5.3.0
8.14.4.8.1 Changed

o Runtime compilation cache now looks for environment variables XDG__CACHE_HOME (on Linux)
and LOCALAPPDATA (on Windows) before falling back to HOME.

8.14.4.8.2 Optimizations

o Optimized 2D R2C/C2R to use 2-kernel plans where possible.
e Improved performance of the Bluestein algorithm.

e Optimized sbce-168 and 100 by using half-Ids.

8.14.4.8.3 Fixed

o Fixed occasional failures to parallelize runtime compilation of kernels. Failures would be retried serially
and ultimately succeed, but this would take extra time.

o Fixed failures of some R2C 3D transforms that use the unsupported TILE_ UNALGNED SBRC kernels.
An example is 9873 R2C out-of-place.

e Fixed bugs in SBRC__ERC type.

8.14.4.9 rocm-cmake 0.8.0

rocm-cmake 0.8.0 for ROCm 5.3.0

8.14.4.9.1 Fixed

e Fixed error in prerm scripts created by rocm_ create package that could break uninstall for packages
using the PTH option.

164 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.14.4.9.2 Changed

« ROCM_USE_ DEV_COMPONENT set to on by default for all platforms. This means that Windows
will now generate runtime and devel packages by default

o« ROCMInstallTargets now defaults CMAKE_INSTALL_LIBDIR to lib if not otherwise specified.
e Changed default Debian compression type to xz and enabled multi-threaded package compression.

e rocm_ create_package will no longer warn upon failure to determine version of program rpmbuild.

8.14.4.10 rocPRIM 2.11.0

rocPRIM 2.11.0 for ROCm 5.3.0

8.14.4.10.1 Added

e New functions subtract_ left and subtract_right in block adjacent_ difference to apply functions on
pairs of adjacent items distributed between threads in a block.

o New device level adjacent_ difference primitives.
¢ Added experimental tooling for automatic kernel configuration tuning for various architectures
e Benchmarks collect and output more detailed system information

e CMake functionality to improve build parallelism of the test suite that splits compilation units by
function or by parameters.

¢ Reverse iterator.

8.14.4.11 rocRAND 2.10.15

rocRAND 2.10.15 for ROCm 5.3.0

8.14.4.11.1 Changed

e Increased number of warmup iterations for rocrand_ benchmark generate from 5 to 15 to eliminate
corner cases that would generate artificially high benchmark scores.

8.14.4.12 rocSOLVER 3.19.0

rocSOLVER 3.19.0 for ROCm 5.3.0

8.14. ROCm 5.3.0 165

ROCm Documentation, Release 5.7.1

8.14.4.12.1 Added

« Partial eigensolver routines for symmetric/hermitian matrices:
— SYEVX (with batched and strided_ batched versions)
— HEEVX (with batched and strided_ batched versions)
e Generalized symmetric- and hermitian-definite partial eigensolvers:
— SYGVX (with batched and strided_batched versions)
— HEGVX (with batched and strided__batched versions)
« Eigensolver routines for symmetric/hermitian matrices using Jacobi algorithm:
— SYEVJ (with batched and strided_ batched versions)
— HEEVJ (with batched and strided_ batched versions)
e Generalized symmetric- and hermitian-definite eigensolvers using Jacobi algorithm:
— SYGVJ (with batched and strided_batched versions)
— HEGVJ (with batched and strided_ batched versions)

o Added —profile_kernels option to rocsolver-bench, which will include kernel calls in the profile log (if
profile logging is enabled with —profile).

8.14.4.12.2 Changed

e Changed rocsolver-bench result labels cpu_time and gpu_time to cpu_time_us and gpu_ time_us,
respectively.

8.14.4.12.3 Removed

¢ Removed dependency on cblas from the rocsolver test and benchmark clients.

8.14.4.12.4 Fixed

o Fixed incorrect SYGS2/HEGS2, SYGST/HEGST, SYGV/HEGV, and SYGVD/HEGVD results for
batch counts larger than 32.

e Fixed STEIN memory access fault when nev is 0.
e Fixed incorrect STEBZ results for close eigenvalues when range = index.

o Fixed git unsafe repository error when building with ./install.sh -cd as a non-root user.

166 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.14.4.13 rocThrust 2.16.0

rocThrust 2.16.0 for ROCm 5.3.0

8.14.4.13.1 Changed

e rocThrust functionality dependent on device malloc works is functional as ROCm 5.2 reneabled device
malloc. Device launched thrust::sort and thrust::sort_ by key are available for use.

8.14.4.14 rocWMMA 0.8

rocWMMA 0.8 for ROCm 5.3.0

8.14.4.15 Tensile 4.34.0

Tensile 4.34.0 for ROCm 5.3.0

8.14.4.15.1 Added

e Lazy loading of solution libraries and code object files

e Support for dictionary style logic files

e Support for decision tree based logic files using dictionary format
e DecisionTreeLibrary for solution selection

e DirectToLLDS support for HGEMM

¢ DirectToVgpr support for SGEMM

e Grid based distance metric for solution selection

e Support for gfx1lxx

o Support for DirectToVgprA/B + TLU=False

o ForkParameters Groups as a way of specifying solution parameters
e Support for a new Tensile yaml config format

o TensileClientConfig for generating Tensile client config files

e Options for TensileCreateLibrary to build client and create client config file

8.14.4.15.2 Optimizations

e Solution generation is now cached and is not repeated if solution parameters are unchanged

8.14. ROCm 5.3.0 167

ROCm Documentation, Release 5.7.1

8.14.4.15.3 Changed

¢ Default MACInstruction to FMA

8.14.4.15.4 Fixed

e Accept StaggerUStride=0 as valid

¢ Reject invalid data types for UnrollLoopEfficiencyEnable

e Fix invalid code generation issues related to Direct ToVgpr

e Return hipErrorNotFound if no modules are loaded

e Fix performance drop for NN ZGEMM with 96x64 macro tile

« Fix memory violation for general batched kernels when alpha/beta/K = 0

8.15 ROCm 5.2.3

8.15.1 Changes in This Release
8.15.1.1 Ubuntu 18.04 End of Life Announcement

Support for Ubuntu 18.04 ends in this release. Future releases of ROCm will not provide prebuilt packages
for Ubuntu 18.04. HIP and Other Runtimes

8.15.1.2 HIP Runtime

8.15.1.2.1 Fixes

e A bug was discovered in the HIP graph capture implementation in the ROCm v5.2.0 release. If the
same kernel is called twice (with different argument values) in a graph capture, the implementation
only kept the argument values for the second kernel call.

e A bug was introduced in the hiprtc implementation in the ROCm v5.2.0 release. This bug caused the
hiprtcGetLoweredName call to fail for named expressions with whitespace in it.

Example:

The named expression my_ sqrt<complex<double>> passed but my_sqrt<complex<double >> failed.
ROCm Libraries

168 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.15.1.3 RCCL

8.15.1.3.1 Added

Compatibility with NCCL 2.12.10
o Packages for test and benchmark executables on all supported OSes using CPack
e Added custom signal handler - opt-in with RCCL_ ENABLE_ SIGNALHANDLER=1
— Additional details provided if Binary File Descriptor library (BFD) is pre-installed.
e Added experimental support for using multiple ranks per device

— Requires using a new interface to create communicator (ncclCommlInitRankMulti), refer to the
interface documentation for details.

— To avoid potential deadlocks, user might have to set an environment variables increasing the
number of hardware queues. For example,

export GPU_MAX HW_QUEUES=16

o Added support for reusing ports in NET/IB channels

— Opt-in with NCCL_IB SOCK_CLIENT PORT REUSE=1 and
NCCL_IB_SOCK_SERVER PORT_ REUSE=1

— When “Call to bind failed: Address already in use” error happens in large-scale AlltoAll(for
example, >=64 MI200 nodes), users are suggested to opt-in either one or both of the options to
resolve the massive port usage issue

— Avoid using NCCL_IB SOCK_SERVER PORT REUSE when
NCCL_NCHANNELS PER_NET_PEER is tuned >1

8.15.1.3.2 Removed

e Removed experimental clique-based kernels

8.15.1.4 Development Tools

No notable changes in this release for development tools, including the compiler, profiler, and debugger
Deployment and Management Tools

No notable changes in this release for deployment and management tools. Older ROCm Releases

For release information for older ROCm releases, refer to https://github.com/RadeonOpenCompute/ROCm/
blob/master/ CHANGELOG.md

8.15. ROCm 5.2.3 169

https://github.com/RadeonOpenCompute/ROCm/blob/master/CHANGELOG.md
https://github.com/RadeonOpenCompute/ROCm/blob/master/CHANGELOG.md

ROCm Documentation, Release 5.7.1

8.15.2 Library Changes in ROCM 5.2.3

8.15.2.1 rccl 2.12.10

Library Version
hipBLAS 0.51.0
hipCUB 2.11.1
hipFFT 1.0.8
hipSOLVER 1.4.0
hipSPARSE 2.2.0
reel 2.11.4 2.12.10
rocALUTION | 2.0.3
rocBLAS 2.44.0
rocFFT 1.0.17
rocPRIM 2.10.14
rocRAND 2.10.14
rocSOLVER 3.18.0
rocSPARSE 2.2.0
rocThrust 2.15.0
rocWMMA 0.7
Tensile 4.33.0

RCCL 2.12.10 for ROCm 5.2.3

8.15.2.1.1 Added

e Compatibility with NCCL 2.12.10

o Packages for test and benchmark executables on all supported OSes using CPack.

e Adding custom signal handler - opt-in with RCCL_ ENABLE_SIGNALHANDLER=1
— Additional details provided if Binary File Descriptor library (BFD) is pre-installed

« Adding support for reusing ports in NET/IB channels

— Opt-in with NCCL_IB_SOCK_CLIENT PORT_ REUSE=1 and
NCCL_IB SOCK_ SERVER PORT REUSE=1

— When “Call to bind failed : Address already in use” error happens in large-scale AlltoAll (e.g.,
>=64 MI200 nodes), users are suggested to opt-in either one or both of the options to resolve the
massive port usage issue

— Avoid using NCCL_IB_SOCK_SERVER PORT REUSE when
NCCL_NCHANNELS PER_NET_ PEER is tuned >1

170 Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.2.3
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.2.3

ROCm Documentation, Release 5.7.1

8.15.2.1.2 Removed

o Removed experimental clique-based kernels

8.16 ROCm 5.2.1

8.16.1 Library Changes in ROCM 5.2.1

Library Version
hipBLAS 0.51.0
hipCUB 2.11.1
hipFFT 1.0.8

hipSOLVER | 1.4.0
hipSPARSE | 2.2.0

rccl 2.11.4
rocALUTION | 2.0.3
rocBLAS 2.44.0
rocFFT 1.0.17
rocPRIM 2.10.14
rocRAND 2.10.14

rocSOLVER 3.18.0
rocSPARSE 2.2.0

rocThrust 2.15.0
rocWMMA 0.7
Tensile 4.33.0

8.17 ROCm 5.2.0

8.17.1 What’s New in This Release

8.17.1.1 HIP Enhancements

The ROCm v5.2 release consists of the following HIP enhancements:

8.17.1.1.1 HIP Installation Guide Updates

The HIP Installation Guide is updated to include building HIP tests from source on the AMD and NVIDIA
platforms.

For more details, refer to the HIP Installation Guide v5.2.

8.16. ROCm 5.2.1 171

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.2.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.2.1

ROCm Documentation, Release 5.7.1

8.17.1.1.2 Support for device-side malloc on HIP-Clang

HIP-Clang now supports device-side malloc. This implementation does not require the use of
hipDeviceSetLimit(hipLimitMallocHeapSize,value) nor respect any setting. The heap is fully dynamic and
can grow until the available free memory on the device is consumed.

The test codes at the following link show how to implement applications using malloc and free functions in
device kernels:

https://github.com/ROCm-Developer-Tools/HIP /blob/develop/tests/src/deviceLib /hipDeviceMalloc.cpp

8.17.1.1.3 New HIP APIs in This Release

The following new HIP APIs are available in the ROCm v5.2 release. Note that this is a pre-official version
(beta) release of the new APIs:

8.17.1.1.3.1 Device management HIP APIs

The new device management HIP APIs are as follows:

¢ Gets a UUID for the device. This API returns a UUID for the device.

hipError__t hipDeviceGetUuid (hipUUID* uuid, hipDevice_t device);

Note
This new API corresponds to the following CUDA API:

CUresult cuDeviceGetUuid(CUuuid* uuid, CUdevice dev);

e Gets default memory pool of the specified device

hipError__t hipDeviceGetDefaultMemPool(hipMemPool__t* mem__pool, int device);

e Sets the current memory pool of a device

hipError_ t hipDeviceSetMemPool(int device, hipMemPool t mem_ pool);

e Gets the current memory pool for the specified device

hipError__t hipDeviceGetMemPool(hipMemPool__t* mem__pool, int device);

8.17.1.1.3.2 New HIP Runtime APIs in Memory Management

The new Stream Ordered Memory Allocator functions of HIP runtime APIs in memory management are as
follows:

o Allocates memory with stream ordered semantics

hipError_t hipMallocAsync(void** dev_ ptr, size_t size, hipStream_ t stream);

e Frees memory with stream ordered semantics

172 Chapter 8. Changelog

https://github.com/ROCm-Developer-Tools/HIP/blob/develop/tests/src/deviceLib/hipDeviceMalloc.cpp

ROCm Documentation, Release 5.7.1

hipError_t hipFreeAsync(void* dev_ ptr, hipStream_ t stream);

Releases freed memory back to the OS

hipError__t hipMemPoolTrimTo(hipMemPool__t mem_ pool, size_t min_ bytes_to__hold);

Sets attributes of a memory pool

hipError__t hipMemPoolSetAttribute(hipMemPool__t mem_ pool, hipMemPoolAttr attr, void* value);

Gets attributes of a memory pool

hipError__t hipMemPoolGetAttribute(hipMemPool _t mem__pool, hipMemPoolAttr attr, void* value);

Controls visibility of the specified pool between devices

hipError_t hipMemPoolSetAccess(hipMemPool _t mem_ pool, const hipMemAccessDesc* desc_list, size_t

—count);

Returns the accessibility of a pool from a device

hipError_ t hipMemPoolGetAccess(hipMemAccessFlags* flags, hipMemPool _t mem_ pool,

—hipMemLocation* location);

Creates a memory pool

hipError__t hipMemPoolCreate(hipMemPool__t* mem_ pool, const hipMemPoolProps* pool_props);

Destroys the specified memory pool

hipError__t hipMemPoolDestroy (hipMemPool__t mem_ pool);

Allocates memory from a specified pool with stream ordered semantics

hipError__t hipMallocFromPool Async(void** dev_ ptr, size_t size, hipMemPool__t mem_ pool, hipStream_ t,

—stream);

Exports a memory pool to the requested handle type

hipError__t hipMemPoolExportToShareableHandle(

void* shared_ handle,
hipMemPool_t mem__pool,
hipMemAllocationHandleType handle_ type,
unsigned int flags);

Imports a memory pool from a shared handle

hipError__t hipMemPoollmportFromShareableHandle(

hipMemPool _t* mem__pool,

void* shared_ handle,
hipMemAllocationHandleType handle_ type,
unsigned int flags);

Exports data to share a memory pool allocation between processes

8.17.

ROCm 5.2.0

173

ROCm Documentation, Release 5.7.1

hipError__t hipMemPoolExportPointer(hipMemPoolPtrExportData* export_ data, void* dev_ ptr);
Import a memory pool allocation from another process.t
hipError__t hipMemPoollmportPointer(

void** dev_ ptr,

hipMemPool _t mem__pool,

hipMemPoolPtrExportData* export_ data);

8.17.1.1.3.3 HIP Graph Management APIs

The new HIP Graph Management APIs are as follows:

Enqueues a host function call in a stream

hipError__t hipLaunchHostFunc(hipStream__t stream, hipHostFn_ t fn, void* userData);

Swaps the stream capture mode of a thread

hipError_t hipThreadExchangeStreamCaptureMode(hipStreamCaptureMode* mode);

Sets a node attribute

hipError__t hipGraphKernelNodeSetAttribute(hipGraphNode_t hNode, hipKernelNodeAttrID attr, const,,
—hipKernelNodeAttrValue* value);

Gets a node attribute

hipError__t hipGraphKernelNodeGetAttribute(hipGraphNode__t hNode, hipKernelNodeAttrID attr,
o hipKernelNodeAttrValue* value);

8.17.1.1.3.4 Support for Virtual Memory Management APIs

The new APIs for virtual memory management are as follows:

Frees an address range reservation made via hipMemAddressReserve

hipError__t hipMemAddressFree(void* devPtr, size_t size);

Reserves an address range

hipError_t hipMemAddressReserve(void** ptr, size_t size, size_t alignment, void* addr, unsigned long, |
—long flags);

Creates a memory allocation described by the properties and size

hipError_t hipMemCreate(hipMemGenericAllocationHandle_ t* handle, size_t size, const
—hipMemAllocationProp* prop, unsigned long long flags);

Exports an allocation to a requested shareable handle type

hipError__t hipMemExportToShareableHandle(void* shareableHandle, hipMemGenericAllocationHandle_t,
—handle, hipMemAllocationHandleType handleType, unsigned long long flags);

Gets the access flags set for the given location and ptr

174

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

hipError_t hipMemGetAccess(unsigned long long* flags, const hipMemLocation* location, void* ptr);

e Calculates either the minimal or recommended granularity

hipError__t hipMemGetAllocationGranularity(size_t* granularity, const hipMemAllocationProp* prop,
—hipMemAllocationGranularity_flags option);

o Retrieves the property structure of the given handle

hipError__t hipMemGetAllocationPropertiesFromHandle(hipMemAllocationProp* prop,
—hipMemGenericAllocationHandle_t handle);

e Imports an allocation from a requested shareable handle type

hipError__t hipMemImportFromShareableHandle(hipMemGenericAllocationHandle_ t* handle, void*
—osHandle, hipMemAllocationHandleType shHandleType);

e Maps an allocation handle to a reserved virtual address range

hipError__t hipMemMap(void* ptr, size_t size, size_t offset, hipMemGenericAllocationHandle_t handle,
—unsigned long long flags);

e Maps or unmaps subregions of sparse HIP arrays and sparse HIP mipmapped arrays

hipError_t hipMemMapArrayAsync(hipArrayMaplInfo* mapInfoList, unsigned int count, hipStream_ t,
—stream);

¢ Release a memory handle representing a memory allocation, that was previously allocated through
hipMemCreate

hipError__t hipMemRelease(hipMemGenericAllocationHandle__t handle);

e Returns the allocation handle of the backing memory allocation given the address

hipError__t hipMemRetainAllocationHandle(hipMemGenericAllocationHandle_ t* handle, void* addr);

o Sets the access flags for each location specified in desc for the given virtual address range

hipError_t hipMemSetAccess(void* ptr, size_t size, const hipMemAccessDesc* desc, size_t count);

e Unmaps memory allocation of a given address range

hipError_t hipMemUnmap(void* ptr, size_t size);

For more information, refer to the HIP API documentation at Modules.

8.17.1.1.4 Planned HIP Changes in Future Releases

Changes to hipDeviceProp_t, HIPMEMCPY_ 3D, and hipArray structures (and related HIP APIs) are
planned in the next major release. These changes may impact backward compatibility.

Refer to the Release Notes document in subsequent releases for more information. ROCm Math and Com-
munication Libraries

In this release, ROCm Math and Communication Libraries consist of the following enhancements and fixes:
New rocWMMA for Matrix Multiplication and Accumulation Operations Acceleration

8.17. ROCm 5.2.0 175

https://rocm.docs.amd.com/projects/HIP/en/latest/.doxygen/docBin/html/modules.html

ROCm Documentation, Release 5.7.1

This release introduces a new ROCm C++ library for accelerating mixed precision matrix multiplication and
accumulation (MFMA) operations leveraging specialized GPU matrix cores. rocWMMA provides a C++
API to facilitate breaking down matrix multiply accumulate problems into fragments and using them in
block-wise operations that are distributed in parallel across GPU wavefronts. The API is a header library
of GPU device code, meaning matrix core acceleration may be compiled directly into your kernel device
code. This can benefit from compiler optimization in the generation of kernel assembly and does not incur
additional overhead costs of linking to external runtime libraries or having to launch separate kernels.

rocWMMA is released as a header library and includes test and sample projects to validate and illustrate
example usages of the C++ API. GEMM matrix multiplication is used as primary validation given the heavy
precedent for the library. However, the usage portfolio is growing significantly and demonstrates different
ways rocWMMA may be consumed.

For more information, refer to Communication Libraries.

8.17.1.2 OpenMP Enhancements in This Release

8.17.1.2.1 OMPT Target Support

The OpenMP runtime in ROCm implements a subset of the OMPT device APIs, as described in the OpenMP
specification document. These are APIs that allow first-party tools to examine the profile and traces for
kernels that execute on a device. A tool may register callbacks for data transfer and kernel dispatch entry
points. A tool may use APIs to start and stop tracing for device-related activities such as data transfer
and kernel dispatch timings and associated metadata. If device tracing is enabled, trace records for device
activities are collected during program execution and returned to the tool using the APIs described in the
specification.

Following is an example demonstrating how a tool would use the OMPT target APIs supported. The
README in /opt/rocm/llvin/examples/tools/ompt outlines the steps to follow, and you can run the pro-
vided example as indicated below:

cd /opt/rocm/llvm/examples/tools/ompt /veccopy-ompt-target-tracing
make run

The file veccopy-ompt-target-tracing.c simulates how a tool would initiate device activity tracing. The file
callbacks.h shows the callbacks that may be registered and implemented by the tool.

8.17.2 Deprecations and Warnings

8.17.2.1 Linux Filesystem Hierarchy Standard for ROCm

ROCm packages have adopted the Linux foundation filesystem hierarchy standard in this release to ensure
ROCm components follow open source conventions for Linux-based distributions. While moving to a new
filesystem hierarchy, ROCm ensures backward compatibility with its 5.1 version or older filesystem hierarchy.
See below for a detailed explanation of the new filesystem hierarchy and backward compatibility.

176 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.17.2.1.1 New Filesystem Hierarchy

The following is the new filesystem hierarchy:

/opt/rocm-<ver>
| --bin
| --All externally exposed Binaries
| --libexec
| --<component>
| -- Component specific private non-ISA executables (architecture independent)
| --include
| -- <component>
| --<header files>
| -lib
| --lib<soname>.so -> lib<soname>.so.major -> lib<soname>>.so.major.minor.patch
(public libraries linked with application)
| --<component> (component specific private library, executable data)
| --<cmake>
| --components
| --<component>.config.cmake
| --share
| --html/<component>/*.html
| -info/<component>/*.[pdf, md, txt]
| --man
| --doc
| -<component>
| --<licenses>
| --<component>
| --<misc files> (arch independent non-executable)
| --samples

Note

ROCm will not support backward compatibility with the v5.1(old) file system hierarchy in its
next major release.

For more information, refer to https://refspecs.linuxfoundation.org/fhs.shtml.

8.17.2.1.2 Backward Compatibility with Older Filesystems

ROCm has moved header files and libraries to its new location as indicated in the above structure and
included symbolic-link and wrapper header files in its old location for backward compatibility.

Note

ROCm will continue supporting backward compatibility until the next major release.

8.17. ROCm 5.2.0 177

https://refspecs.linuxfoundation.org/fhs.shtml

ROCm Documentation, Release 5.7.1

8.17.2.1.3 Wrapper header files

Wrapper header files are placed in the old location (/opt/rocm-xxx/<component>/include) with a warning
message to include files from the new location (/opt/rocm-xxx/include) as shown in the example below:

// Code snippet from hip_ runtime.h
#pragma message “This file is deprecated. Use file from include path /opt/rocm-ver/include/ and prefix with hip”.
#include “hip/hip_ runtime.h”

The wrapper header files’ backward compatibility deprecation is as follows:
e F#pragma message announcing deprecation — ROCm v5.2 release
e #pragma message changed to #warning — Future release
e #warning changed to #error — Future release

e Backward compatibility wrappers removed — Future release

8.17.2.1.4 Library files

Library files are available in the /opt/rocm-xxx/lib folder. For backward compatibility, the old library
location (/opt/rocm-xxx/<component>/lib) has a soft link to the library at the new location.

Example:

$ 1s -1 /opt/rocm/hip/lib/

total 4

drwxr-xr-x 4 root root 4096 May 12 10:45 cmake

Irwxrwxrwx 1 root root 24 May 10 23:32 libamdhip64.so -> ../../lib/libamdhip64.so

8.17.2.1.5 CMake Config files

All CMake configuration files are available in the /opt/rocm-xxx/lib/cmake/<component> folder. For
backward compatibility, the old CMake locations (/opt/rocm-xxx/<component>/lib/cmake) consist of a
soft link to the new CMake config.

Example:

$ Is -1 /opt/rocm/hip/lib/cmake/hip/
total O
Irwxrwxrwx 1 root root 42 May 10 23:32 hip-config.cmake -> ../../../../lib/cmake/hip /hip-config.cmake

8.17.2.2 Planned deprecation of hip-rocclr and hip-base packages

In the ROCm v5.2 release, hip-rocclr and hip-base packages (Debian and RPM) are planned for deprecation
and will be removed in a future release. hip-runtime-amd and hip-dev(el) will replace these packages respec-
tively. Users of hip-rocclr must install two packages, hip-runtime-amd and hip-dev, to get the same set of
packages installed by hip-rocclr previously.

Currently, both package names hip-rocclr (or) hip-runtime-amd and hip-base (or) hip-dev(el) are supported.
Deprecation of Integrated HIP Directed Tests

The integrated HIP directed tests, which are currently built by default, are deprecated in this release. The
default building and execution support through CMake will be removed in future release.

178 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.17.3 Fixed Defects

Fixed Defect Fix

ROCmInfo does not list gpus Code fix
Hang observed while restoring cooperative group samples Code fix
ROCM-SMI over SRIOV: Unsupported commands do not return proper error message | Code fix

8.17.4 Known Issues

This section consists of known issues in this release.

8.17.4.1 Compiler Error on gfx1030 When Compiling at -O0

8.17.4.1.1 Issue

A compiler error occurs when using -O0 flag to compile code for gfx1030 that calls atomicAddNoRet, which
is defined in amd_ hip_ atomic.h. The compiler generates an illegal instruction for gfx1030.

8.17.4.1.2 Workaround

The workaround is not to use the -O0 flag for this case. For higher optimization levels, the compiler does
not generate an invalid instruction.

8.17.4.2 System Freeze Observed During CUDA Memtest Checkpoint

8.17.4.2.1 Issue

Checkpoint/Restore in Userspace (CRIU) requires 20 MB of VRAM approximately to checkpoint and re-
store. The CRIU process may freeze if the maximum amount of available VRAM is allocated to checkpoint
applications.

8.17.4.2.2 Workaround

To use CRIU to checkpoint and restore your application, limit the amount of VRAM the application uses
to ensure at least 20 MB is available.

8.17.4.3 HPC test fails with the “HSA STATUS ERROR MEMORY FAULT” error

8.17.4.3.1 Issue

The compiler may incorrectly compile a program that uses the _ shfl sync(mask, value, srcLane) function
when the “value” parameter to the function is undefined along some path to the function. For most functions,
uninitialized inputs cause undefined behavior, but the definition for __ shfl sync should allow for undefined
values.

8.17. ROCm 5.2.0 179

ROCm Documentation, Release 5.7.1

8.17.4.3.2 Workaround

The workaround is to initialize the parameters to _ shfl sync.
Note

When the -Wall compilation flag is used, the compiler generates a warning indicating the variable
is initialized along some path.

Example:

double res = 0.0; // Initialize the input to __ shfl_sync.
if (lane == 0) {

res = <some expression>
}

res = __ shfl_sync(mask, res, 0);

8.17.4.4 Kernel produces incorrect result

8.17.4.4.1 Issue

In recent changes to Clang, insertion of the noundef attribute to all the function arguments has been enabled
by default.

In the HIP kernel, variable var in shfl__sync may not be initialized, so LLVM IR treats it as undef.

So, the function argument that is potentially undef (because it is not intialized) has always been assumed
to be noundef by LLVM IR (since Clang has inserted noundef attribute). This leads to ambiguous kernel
execution.

8.17.4.4.2 Workaround

 Skip adding noundef attribute to functions tagged with convergent attribute. Refer to https://reviews.
llvm.org/D124158 for more information.

e Introduce shuffle attribute and add it to __ shfl like APIs at hip headers. Clang can skip adding
noundef attribute, if it finds that argument is tagged with shuffle attribute. Refer to https://reviews.
llvm.org/D125378 for more information.

e Introduce clang builtin for __ shfl to identify it and skip adding noundef attribute.

o Introduce __ builtin_ freeze to use on the relevant arguments in library wrappers. The library /header
need to insert freezes on the relevant inputs.

8.17.4.5 Issue with Applications Triggering Oversubscription

There is a known issue with applications that trigger oversubscription. A hardware hang occurs when
ROCgdb is used on AMD Instinct™ MI50 and MI100 systems.

This issue is under investigation and will be fixed in a future release.

180 Chapter 8. Changelog

https://reviews.llvm.org/D124158
https://reviews.llvm.org/D124158
https://reviews.llvm.org/D125378
https://reviews.llvm.org/D125378

ROCm Documentation, Release 5.7.1

8.17.5 Library Changes in ROCM 5.2.0

8.17.5.1 hipBLAS 0.51.0

hipBLAS 0.51.0 for ROCm 5.2.0

8.17.5.1.1 Added

Library Version
hipBLAS 0.50.0 0.51.0
hipCUB 2.11.0 2.11.1
hipFFT 1.0.7 1.0.8
hipSOLVER 1.3.0 1.4.0
hipSPARSE 2.1.0 2.2.0

recl 2.11.4
rocALUTION | 2.0.2 2.0.3
rocBLAS 2.43.0 2.44.0
rocFFT 1.0.16 1.0.17
rocPRIM 2.10.13 2.10.14
rocRAND 2.10.13 2.10.14
rocSOLVER 3.17.0 3.18.0
rocSPARSE 2.1.0 2.2.0
rocThrust 2.14.0 2.15.0
rocWMMA 0.7

Tensile 4.32.0 4.33.0

o Packages for test and benchmark executables on all supported OSes using CPack.

o Added File/Folder Reorg Changes with backward compatibility support enabled using ROCM-CMAKE

wrapper functions

o Added user-specified initialization option to hipblas-bench

8.17.5.1.2 Fixed

e Fixed version gathering in performance measuring script

8.17.5.2 hipCUB 2.11.1

hipCUB 2.11.1 for ROCm 5.2.0

8.17. ROCm 5.2.0

181

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/rocWMMA/releases/tag/rocm-5.2.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.2.0

ROCm Documentation, Release 5.7.1

8.17.5.2.1 Added

e Packages for tests and benchmark executable on all supported OSes using CPack.

8.17.5.3 hipFFT 1.0.8
hipFFT 1.0.8 for ROCm 5.2.0
8.17.5.3.1 Added
o Added File/Folder Reorg Changes with backward compatibility support using ROCM-CMAKE wrap-

per functions.

e Packages for test and benchmark executables on all supported OSes using CPack.

8.17.5.4 hipSOLVER 1.4.0

hipSOLVER 1.4.0 for ROCm 5.2.0

8.17.5.4.1 Added

o Package generation for test and benchmark executables on all supported OSes using CPack.
« File/Folder Reorg

— Added File/Folder Reorg Changes with backward compatibility support using ROCM-CMAKE
wrapper functions.

8.17.5.4.2 Fixed

o Fixed the ReadTheDocs documentation generation.

8.17.5.5 hipSPARSE 2.2.0

hipSPARSE 2.2.0 for ROCm 5.2.0

8.17.5.5.1 Added

o Packages for test and benchmark executables on all supported OSes using CPack.

182 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.17

5.6 tocALUTION 2.0.3

rocALUTION 2.0.3 for ROCm 5.2.0

8.17

8.17

.5.6.1 Added

Packages for test and benchmark executables on all supported OSes using CPack.

.5.7 rocBLAS 2.44.0

rocBLAS 2.44.0 for ROCm 5.2.0

8.17

8.17

8.17

.5.7.1 Added

Packages for test and benchmark executables on all supported OSes using CPack.

Added Denormal number detection to the Numerical checking helper function to detect denor-
mal/subnormal numbers in the input and the output vectors of rocBLAS level 1 and 2 functions.

Added Denormal number detection to the Numerical checking helper function to detect denor-
mal/subnormal numbers in the input and the output general matrices of rocBLAS level 2 and 3
functions.

Added NaN initialization tests to the yaml files of Level 2 rocBLAS batched and strided-batched
functions for testing purposes.

Added memory allocation check to avoid disk swapping during rocblas-test runs by skipping tests.

.5.7.2 Optimizations

Improved performance of non-batched and batched her2 for all sizes and data types.
Improved performance of non-batched and batched amin for all data types using shuffle reductions.
Improved performance of non-batched and batched amax for all data types using shuffle reductions.

Improved performance of trsv for all sizes and data types.

.5.7.3 Changed

Modifying gemm_ ex for HBH (High-precision F16). The alpha/beta data type remains as F32 without
narrowing to F'16 and expanding back to F32 in the kernel. This change prevents rounding errors due
to alpha/beta conversion in situations where alpha/beta are not exactly represented as an F16.

Modified non-batched and batched asum, nrm2 functions to use shuffle instruction based reductions.
For gemm, gemm__ex, gemm__ex2 internal API use rocblas_stride datatype for offset.

For symm, hemm, syrk, herk, dgmm, geam internal API use rocblas_ stride datatype for offset.
AMD copyright year for all rocBLAS files.

For gemv (transpose-case), typecasted the ‘lda’(offset) datatype to size_t during offset calculation to
avoid overflow and remove duplicate template functions.

8.17.

ROCm 5.2.0 183

ROCm Documentation, Release 5.7.1

8.17.5.7.4 Fixed

e For function her2 avoid overflow in offset calculation.

e For trsm when alpha == 0 and on host, allow A to be nullptr.

e Fixed memory access issue in trsv.

e Fixed git pre-commit script to update only AMD copyright year.

e Fixed dgmm, geam test functions to set correct stride values.

e For functions ssyr2k and dsyr2k allow trans == rocblas_ operation_ conjugate_ transpose.

e Fixed compilation error for clients-only build.

8.17.5.7.5 Removed
o Remove Navil2 (gfx1011) from fat binary.
8.17.5.8 rocFFT 1.0.17
rocFFT 1.0.17 for ROCm 5.2.0
8.17.5.8.1 Added

e Packages for test and benchmark executables on all supported OSes using CPack.

o Added File/Folder Reorg Changes with backward compatibility support using ROCM-CMAKE wrap-
per functions.

8.17.5.8.2 Changed

e Improved reuse of twiddle memory between plans.

o Set a default load/store callback when only one callback type is set via the API for improved perfor-
mance.

8.17.5.8.3 Optimizations

o Introduced a new access pattern of lds (non-linear) and applied it on sbee kernels len 64 to get perfor-
mance improvement.

184 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.17.5.8.4 Fixed

e Fixed plan creation failure in cases where SBCC kernels would need to write to non-unit-stride buffers.

8.17.5.9 rocPRIM 2.10.14

rocPRIM 2.10.14 for ROCm 5.2.0

8.17.5.9.1 Added

o Packages for tests and benchmark executable on all supported OSes using CPack.

o Added File/Folder Reorg Changes and Enabled Backward compatibility support using wrapper head-
ers.

8.17.5.10 rocRAND 2.10.14

rocRAND 2.10.14 for ROCm 5.2.0

8.17.5.10.1 Added

e Backward compatibility for deprecated #include <rocrand.h> using wrapper header files.

o Packages for test and benchmark executables on all supported OSes using CPack.

8.17.5.11 rocSOLVER 3.18.0

rocSOLVER 3.18.0 for ROCm 5.2.0

8.17.5.11.1 Added

o Partial eigenvalue decomposition routines:
— STEBZ
— STEIN
o Package generation for test and benchmark executables on all supported OSes using CPack.
e Added tests for multi-level logging
o Added tests for rocsolver-bench client
File/Folder Reorg

— Added File/Folder Reorg Changes with backward compatibility support using ROCM-CMAKE
wrapper functions.

8.17. ROCm 5.2.0 185

ROCm Documentation, Release 5.7.1

8.17.5.11.2 Fixed

e Fixed compatibility with libfmt 8.1

8.17.5.12 rocSPARSE 2.2.0

rocSPARSE 2.2.0 for ROCm 5.2.0

8.17.5.12.1 Added

e batched SpMM for CSR, COO and Blocked ELL formats.
o Packages for test and benchmark executables on all supported OSes using CPack.

« Clients file importers and exporters.

8.17.5.12.2 Improved

¢ Clients code size reduction.
e Clients error handling.

e Clients benchmarking for performance tracking.

8.17.5.12.3 Changed

e Test adjustments due to roundoff errors.

o Fixing API calls compatiblity with rocPRIM.

8.17.5.12.4 Known Issues

e none

8.17.5.13 rocThrust 2.15.0

rocThrust 2.15.0 for ROCm 5.2.0

8.17.5.13.1 Added

e Packages for tests and benchmark executable on all supported OSes using CPack.

186 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.17

.5.14 rocWMMA 0.7

rocWMMA 0.7 for ROCm 5.2.0

8.17

8.17

.5.14.1 Added

Added unit tests for DLRM kernels

Added GEMM sample

Added DLRM sample

Added SGEMV sample

Added unit tests for cooperative wmma load and stores

Added unit tests for IOBarrier.h

Added wmma load/ store tests for different matrix types (A, B and Accumulator)
Added more block sizes 1, 2, 4, 8 to test MmaSyncMultiTest

Added block sizes 4, 8 to test MmaSynMultiL.dsTest

Added support for wmma load / store layouts with block dimension greater than 64
Added IOShape structure to define the attributes of mapping and layouts for all wmma matrix types
Added CI testing for rocWMMA

.5.14.2 Changed

Renamed wmma to rocwmma in cmake, header files and documentation
Renamed library files

Modified Layout.h to use different matrix offset calculations (base offset, incremental offset and cumu-
lative offset)

Opaque load/store continue to use incrementatl offsets as they fill the entire block

Cooperative load/store use cumulative offsets as they fill only small portions for the entire block
Increased Max split counts to 64 for cooperative load/store

Moved all the wmma definitions, API headers to rocwmma namespace

Modified wmma fill unit tests to validate all matrix types (A, B, Accumulator)

.5.15 Tensile 4.33.0

Tensile 4.33.0 for ROCm 5.2.0

8.17

. ROCm 5.2.0 187

ROCm Documentation, Release 5.7.1

8.17.5.15.1 Added

e TensileUpdateLibrary for updating old library logic files

e Support for TensileRetuneLibrary to use sizes from separate file

o ZGEMM DirectToVgpr/Direct ToLds/StoreCInUnroll/MIArchVgpr support

o Tests for denorm correctness

¢ Option to write different architectures to different TensileLibrary files

8.17.5.15.2 Optimizations

e Optimize MessagePackLoadLibraryFile by switching to fread

o« DGEMM tail loop optimization for PrefetchAcrossPersistentMode=1/Direct ToVgpr

8.17.5.15.3 Changed

o Alpha/beta datatype remains as F32 for HPA HGEMM

e Force assembly kernels to not flush denorms

e Use hipDeviceAttributePhysicalMultiProcessorCount as multiProcessorCount

8.17.5.15.4 Fixed

¢ Fix segmentation fault when run i8 datatype with TENSILE_DB=0x80

8.18 ROCm 5.1.3

8.18.1 Library Changes in ROCM 5.1.3

Library Version
hipBLAS 0.50.0
hipCUB 2.11.0
hipFFT 1.0.7
hipSOLVER | 1.3.0
hipSPARSE 2.1.0
recl 2.11.4
rocALUTION | 2.0.2
rocBLAS 2.43.0
rocFFT 1.0.16
rocPRIM 2.10.13
rocRAND 2.10.13
rocSOLVER 3.17.0
rocSPARSE 2.1.0
rocThrust 2.14.0
Tensile 4.32.0

188

Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.1.3
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.1.3

ROCm Documentation, Release 5.7.1

8.19 ROCm 5.1.1

8.19.1 Library Changes in ROCM 5.1.1

Library Version
hipBLAS 0.50.0
hipCUB 2.11.0
hipFFT 1.0.7
hipSOLVER 1.3.0
hipSPARSE 2.1.0
rccl 2.11.4
rocALUTION | 2.0.2
rocBLAS 2.43.0
rocFFT 1.0.16
rocPRIM 2.10.13
rocRAND 2.10.13
rocSOLVER 3.17.0
rocSPARSE 2.1.0
rocThrust 2.14.0
Tensile 4.32.0

8.20 ROCm 5.1.0

8.20.1 What’s New in This Release

8.20.1.1 HIP Enhancements

The ROCm v5.1 release consists of the following HIP enhancements.

8.20.1.1.1 HIP Installation Guide Updates

The HIP Installation Guide is updated to include installation and building HIP from source on the AMD

and NVIDIA platforms.
Refer to the HIP Installation Guide v5.1 for more details.

8.19. ROCm 5.1.1

189

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.1.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.1.1

ROCm Documentation, Release 5.7.1

8.20.1.1.2 Support for HIP Graph

ROCm v5.1 extends support for HIP Graph.

8.20.1.1.3 Planned Changes for HIP in Future Releases
8.20.1.1.3.1 Separation of hiprtc (libhiprtce) library from hip runtime (amdhip64)

On ROCm/Linux, to maintain backward compatibility, the hipruntime library (amdhip64) will continue
to include hiprtc symbols in future releases. The backward compatible support may be discontinued by
removing hiprtc symbols from the hipruntime library (amdhip64) in the next major release.

8.20.1.1.3.2 hipDeviceProp_t Structure Enhancements

Changes to the hipDeviceProp_t structure in the next major release may result in backward incompatibility.
More details on these changes will be provided in subsequent releases.

8.20.1.2 ROCDebugger Enhancements

8.20.1.2.1 Multi-language Source Level Debugger

The compiler now generates a source-level variable and function argument debug information.
The accuracy is guaranteed if the compiler options -g -O0 are used and apply only to HIP.

This enhancement enables ROCDebugger users to interact with the HIP source-level variables and function
arguments.

Note

The newly-suggested compiler -g option must be used instead of the previously-suggested -ggdb
option. Although the effect of these two options is currently equivalent, this is not guaranteed
for the future and might get changed by the upstream LLVM community.

8.20.1.2.2 Machine Interface Lanes Support

ROCDebugger Machine Interface (MI) extends support to lanes. The following enhancements are made:
¢ Added a new -lane-info command, listing the current thread’s lanes.

e The -thread-select command now supports a lane switch to switch to a specific lane of a thread:

-thread-select -1 LANE THREAD

e The =thread-selected notification gained a lane-id attribute. This enables the frontend to know which
lane of the thread was selected.

o The *stopped asynchronous record gained lane-id and hit-lanes attributes. The former indicates which
lane is selected, and the latter indicates which lanes explain the stop.

e MI commands now accept a global —lane option, similar to the global —thread and —frame options.
e MI varobjs are now lane-aware.

For more information, refer to the ROC Debugger User Guide at ROCgdb.

190 Chapter 8. Changelog

https://rocm.docs.amd.com/projects/ROCgdb/en/latest/index.html

ROCm Documentation, Release 5.7.1

8.20.1.2.3 Enhanced - clone-inferior Command

The clone-inferior command now ensures that the TTY, CMD, ARGS, and AMDGPU PRECISE-MEMORY
settings are copied from the original inferior to the new one. All modifications to the environment variables
done using the ‘set environment’ or ‘unset environment’ commands are also copied to the new inferior.

8.20.1.3 MIOpen Support for RDNA GPUs
This release includes support for AMD Radeon™ Pro W6800, in addition to other bug fixes and performance

improvements as listed below:

e MIOpen now supports RDNA GPUs!! (via MIOpen PRs 973, 780, 764, 740, 739, 677, 660, 653, 493,
498)

e Fixed a correctness issue with ImplicitGemm algorithm

e Updated the performance data for new kernel versions

e Improved MIOpen build time by splitting large kernel header files
e Fixed an issue in reduction kernels for padded tensors

e Various other bug fixes and performance improvements

For more information, see Documentation.

8.20.1.4 Checkpoint Restore Support With CRIU

The new Checkpoint Restore in Userspace (CRIU) functionality is implemented to support AMD GPU and
ROCm applications.

CRIU is a userspace tool to Checkpoint and Restore an application.

CRIU lacked the support for checkpoint restore applications that used device files such as a GPU. With this
ROCm release, CRIU is enhanced with a new plugin to support AMD GPUs, which includes:

o Single and Multi GPU systems (Gfx9)
o Checkpoint / Restore on a different system
e Checkpoint / Restore inside a docker container
e PyTorch
o Tensorflow
e Using CRIU Image Streamer
For more information, refer to https://github.com/checkpoint-restore/criu/tree/criu-dev/plugins/amdgpu
Note

The CRIU plugin (amdgpu_ plugin) is merged upstream with the CRIU repository. The KFD
kernel patches are also available upstream with the amd-staging-drm-next branch (public) and
the ROCm 5.1 release branch.

Note

This is a Beta release of the Checkpoint and Restore functionality, and some features are not
available in this release.

For more information, refer to the following websites:

8.20. ROCm 5.1.0 191

https://rocm.docs.amd.com/projects/MIOpen/en/latest/index.html
https://github.com/checkpoint-restore/criu/tree/criu-dev/plugins/amdgpu

ROCm Documentation, Release 5.7.1

e https://github.com/RadeonOpenCompute/criu/blob/amdgpu_ plugin-03252022/Documentation/
amdgpu_ plugin.txt

e https://criv.org/Main_Page

8.20.2 Fixed Defects

The following defects are fixed in this release.

8.20.2.1 Driver Fails To Load after Installation

The issue with the driver failing to load after ROCm installation is now fixed.

The driver installs successfully, and the server reboots with working rocminfo and clinfo.

8.20.2.2 ROCDebugger Fixed Defects

8.20.2.2.1 Breakpoints in GPU kernel code Before Kernel Is Loaded

Previously, setting a breakpoint in device code by line number before the device code was loaded into the
program resulted in ROCgdb incorrectly moving the breakpoint to the first following line that contains host
code.

Now, the breakpoint is left pending. When the GPU kernel gets loaded, the breakpoint resolves to a location
in the kernel.

8.20.2.2.2 Registers Invalidated After Write

Previously, the stale just-written value was presented as a current value.

ROCgdb now invalidates the cached values of registers whose content might differ after being written. For
example, registers with read-only bits.

ROCgdb also invalidates all volatile registers when a volatile register is written. For example, writing VCC
invalidates the content of STATUS as STATUS.VCCZ may change.

8.20.2.2.3 Scheduler-locking and GPU Wavefronts

When scheduler-locking is in effect, new wavefronts created by a resumed thread, CPU, or GPU wavefront,
are held in the halt state. For example, the “set scheduler-locking” command.

8.20.2.2.4 ROCDebugger Fails Before Completion of Kernel Execution

It was possible (although erroneous) for a debugger to load GPU code in memory, send it to the device, start
executing a kernel on the device, and dispose of the original code before the kernel had finished execution.
If a breakpoint was hit after this point, the debugger failed with an internal error while trying to access the
debug information.

This issue is now fixed by ensuring that the debugger keeps a local copy of the original code and debug
information.

192 Chapter 8. Changelog

https://github.com/RadeonOpenCompute/criu/blob/amdgpu_plugin-03252022/Documentation/amdgpu_plugin.txt
https://github.com/RadeonOpenCompute/criu/blob/amdgpu_plugin-03252022/Documentation/amdgpu_plugin.txt
https://criu.org/Main_Page

ROCm Documentation, Release 5.7.1

8.20.3 Known Issues

8.20.3.1 Random Memory Access Fault Errors Observed While Running Math Libraries Unit Tests

Issue: Random memory access fault issues are observed while running Math libraries unit tests. This issue
is encountered in ROCm v5.0, ROCm v5.0.1, and ROCm v5.0.2.

Note, the faults only occur in the SRIOV environment.

Workaround: Use SDMA to update the page table. The Guest set up steps are as follows:

sudo modprobe amdgpu v update mode=0

To verify, use

Guest:

cat /sys/module/amdgpu/parameters/vm__update__mode 0

Where expectation is 0.

8.20.3.2 CU Masking Causes Application to Freeze

Using CU Masking results in an application freeze or runs exceptionally slowly. This issue is noticed only in
the GFX10 suite of products. Note, this issue is observed only in GFX10 suite of products.

This issue is under active investigation at this time.
8.20.3.3 Failed Checkpoint in Docker Containers

A defect with Ubuntu images kernel-5.13-30-generic and kernel-5.13-35-generic with Overlay FS results in
incorrect reporting of the mount ID.

This issue with Ubuntu causes CRIU checkpointing to fail in Docker containers.
As a workaround, use an older version of the kernel. For example, Ubuntu 5.11.0-46-generic.

8.20.3.4 Issue with Restoring Workloads Using Cooperative Groups Feature

Workloads that use the cooperative groups function to ensure all waves can be resident at the same time
may fail to restore correctly. This issue is under investigation and will be fixed in a future release.

8.20.3.5 Radeon Pro V620 and W6800 Workstation GPUs

8.20.3.5.1 No Support for ROCDebugger on SRIOV

ROCDebugger is not supported in the SRIOV environment on any GPU.

This is a known issue and will be fixed in a future release.

8.20. ROCm 5.1.0 193

ROCm Documentation, Release 5.7.1

8.20.3.6 Random Error Messages in ROCm SMI for SR-IOV

Random error messages are generated by unsupported functions or commands.

This is a known issue and will be fixed in a future release.

8.20.4 Library Changes in ROCM 5.1.0

Library Version
hipBLAS 0.49.0 0.50.0
hipCUB 2.10.13 2.11.0
hipFFT 1.04 1.0.7
hipSOLVER 1.2.0 1.3.0
hipSPARSE 2.0.0 2.1.0

reel 2.10.3 2.11.4
rocALUTION | 2.0.1 2.0.2
rocBLAS 2.42.0 2.43.0
rocFFT 1.0.13 1.0.16
rocPRIM 2.10.12 2.10.13
rocRAND 2.10.12 2.10.13
rocSOLVER 3.16.0 3.17.0
rocSPARSE 2.0.0 2.1.0
rocThrust 2.13.0 2.14.0
Tensile 4.31.0 4.32.0

8.20.4.1 hipBLAS 0.50.0

hipBLAS 0.50.0 for ROCm 5.1.0

8.20.4.1.1 Added

o Added library version and device information to hipblas-test output

e Added -rocsolver-path command line option to choose path to pre-built rocSOLVER, as absolute or
relative path

e Added —cmake install command line option to update cmake to minimum version if required
o Added cmake-arg parameter to pass in cmake arguments while building

e Added infrastructure to support readthedocs hipBLAS documentation.

194 Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.1.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.1.0

ROCm Documentation, Release 5.7.1

8.20.4.1.2 Fixed

e Added hipblasVersionMinor define. hipblaseVersionMinor remains defined for backwards compatibility.
¢ Doxygen warnings in hipblas.h header file.

8.20.4.1.3 Changed

e rocblas-path command line option can be specified as either absolute or relative path
e Help message improvements in install.sh and rmake.py
o Updated googletest dependency from 1.10.0 to 1.11.0

8.20.4.2 hipCUB 2.11.0

hipCUB 2.11.0 for ROCm 5.1.0

8.20.4.2.1 Added

e Device segmented sort
e Warp merge sort, WarpMask and thread sort from cub 1.15.0 supported in hipCUB

e Device three way partition

8.20.4.2.2 Changed

e Device scan and device_segmented_scan: inclusive scan now uses the input-type as accumulator-
type, exclusive_scan uses initial-value-type.

— This particularly changes behaviour of small-size input types with large-size output types (e.g.
short input, int output).

— And low-res input with high-res output (e.g. float input, double output)

— Block merge sort no longer supports non power of two blocksizes

8.20.4.3 hipFFT 1.0.7

hipFFT 1.0.7 for ROCm 5.1.0

8.20.4.3.1 Changed

e Use fft_ params struct for accuracy and benchmark clients.

8.20. ROCm 5.1.0 195

ROCm Documentation, Release 5.7.1

8.20.4.4 hipSOLVER 1.3.0

hipSOLVER 1.3.0 for ROCm 5.1.0

8.20.4.4.1 Added

¢ Added functions
— gels

* hipsolverSSgels_ bufferSize, hipsolverDDgels_ bufferSize, hipsolverCCgels_ bufferSize, hip-
solverZZgels bufferSize

* hipsolverSSgels, hipsolverDDgels, hipsolverCCgels, hipsolverZZgels

Added library version and device information to hipsolver-test output.
e Added compatibility API with hipsolverDn prefix.

e Added compatibility-only functions

— gesvdj

* hipsolverDnSgesvdj_ bufferSize, hipsolverDnDgesvdj_ bufferSize, hipsolverD-
nCgesvdj_ bufferSize, hipsolverDnZgesvdj_ bufferSize

* hipsolverDnSgesvdj, hipsolverDnDgesvdj, hipsolverDnCgesvdj, hipsolverDnZgesvdj
— gesvdjBatched

* hipsolverDnSgesvdjBatched_ bufferSize, hipsolverDnDgesvdjBatched_ bufferSize, hipsolverD-
nCgesvdjBatched bufferSize, hipsolverDnZgesvdjBatched_bufferSize

* hipsolverDnSgesvdjBatched, hipsolverDnDgesvdjBatched, hipsolverDnCgesvdjBatched, hip-
solverDnZgesvdjBatched

— Syevj

* hipsolverDnSsyevj_ bufferSize, hipsolverDnDsyevj_ bufferSize, hipsolverD-
nCheevj_ bufferSize, hipsolverDnZheevj_ bufferSize

* hipsolverDnSsyevj, hipsolverDnDsyevj, hipsolverDnCheevj, hipsolverDnZheevj
— syevjBatched

* hipsolverDnSsyevjBatched_bufferSize, hipsolverDnDsyevjBatched bufferSize, hipsolverD-
nCheevjBatched_ bufferSize, hipsolverDnZheevjBatched_ bufferSize

* hipsolverDnSsyevjBatched, hipsolverDnDsyevjBatched, hipsolverDnCheevjBatched, hip-
solverDnZheevjBatched

— sygvj

* hipsolverDnSsygvj_ bufferSize, hipsolverDnDsygvj_ bufferSize, hipsolverD-
nChegvj_ bufferSize, hipsolverDnZhegvj_ bufferSize

* hipsolverDnSsygvj, hipsolverDnDsygvj, hipsolverDnChegvj, hipsolverDnZhegyvj

196 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.20.4.4.2 Changed
e The rocSOLVER backend now allows hipsolverXXgels and hipsolverXXgesv to be called in-place when
B=X.
e The rocSOLVER backend now allows rwork to be passed as a null pointer to hipsolverXgesvd.

8.20.4.4.3 Fixed

o bufferSize functions will now return HIPSOLVER STATUS NOT INITIALIZED instead of HIP-
SOLVER_STATUS INVALID VALUE when both handle and lwork are null.

o Fixed rare memory allocation failure in syevd/heevd and sygvd/hegvd caused by improper workspace
array allocation outside of rocSOLVER.

8.20.4.5 hipSPARSE 2.1.0

hipSPARSE 2.1.0 for ROCm 5.1.0

8.20.4.5.1 Added

e Added gtsv_interleaved__batch and gpsv__interleaved_ batch routines
e Add SpGEMM._ reuse

8.20.4.5.2 Changed

e Changed BUILD__CUDA with USE__CUDA in install script and cmake files
o Update googletest to 11.1

8.20.4.5.3 Improved

e Fixed a bug in SpMM Alg versioning

8.20.4.5.4 Known Issues

e none

8.20.4.6 rccl 2.11.4

RCCL 2.11.4 for ROCm 5.1.0

8.20. ROCm 5.1.0 197

ROCm Documentation, Release 5.7.1

8.20.4.6.1 Added

e Compatibility with NCCL 2.11.4

8.20.4.6.2 Known Issues

e Managed memory is not currently supported for clique-based kernels

8.20.4.7 rocALUTION 2.0.2

rocALUTION 2.0.2 for ROCm 5.1.0

8.20.4.7.1 Added

¢ Added out-of-place matrix transpose functionality

¢ Added LocalVector<bool>

8.20.4.8 rocBLAS 2.43.0

rocBLAS 2.43.0 for ROCm 5.1.0

8.20.4.8.1 Added

o Option to install script for number of jobs to use for rocBLAS and Tensile compilation (-j, —jobs)
» Option to install script to build clients without using any Fortran (—clients no_fortran)

« rocblas_ client_ initialize function, to perform rocBLAS initialize for clients(benchmark/test) and re-
port the execution time.

o Added tests for output of reduction functions when given bad input

o Added user specified initialization (rand_int/trig_float/hpl) for initializing matrices and vectors in
rocblas-bench

8.20.4.8.2 Optimizations

e Improved performance of trsm with side == left and n ==

o Improved perforamnce of trsm with side == left and m <= 32 along with side == right and n <= 32

198 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.20.4.8.3 Changed

e For syrkx and trmm internal API use rocblas_stride datatype for offset

e For non-batched and batched gemm_ ex functions if the C matrix pointer equals the D matrix pointer
(aliased) their respective type and leading dimension arguments must now match

e Test client dependencies updated to GTest 1.11

o mnon-global false positives reported by cppcheck from file based suppression to inline suppression. File
based suppression will only be used for global false positives.

o Help menu messages in install.sh

o For ger function, typecast the ‘lda’(offset) datatype to size_t during offset calculation to avoid overflow
and remove duplicate template functions.

e Modified default initialization from rand_int to hpl for initializing matrices and vectors in rocblas-
bench

8.20.4.8.4 Fixed

o For function trmv (non-transposed cases) avoid overflow in offset calculation
o Fixed cppcheck errors/warnings
e Fixed doxygen warnings

8.20.4.9 rocFFT 1.0.16

rocFFT 1.0.16 for ROCm 5.1.0

8.20.4.9.1 Changed

e Supported unaligned tile dimension for SBRC_ 2D kernels.
o Improved (more RAII) test and benchmark infrastructure.

e Enabled runtime compilation of length-2304 FFT kernel during plan creation.

8.20.4.9.2 Optimizations

e Optimized more large 1D cases by using L1D_ CC plan.
o Optimized 3D 20073 C2R case.
e Optimized 1D 2730 double precision on MI200.

8.20. ROCm 5.1.0 199

ROCm Documentation, Release 5.7.1

8.20.4.9.3 Fixed

o TFixed correctness of some R2C transforms with unusual strides.

8.20.4.9.4 Removed

o The hipFFT API (header) has been removed from after a long deprecation period. Please use the
hipFFT package/repository to obtain the hipFFT API.

8.20.4.10 rocPRIM 2.10.13
rocPRIM 2.10.13 for ROCm 5.1.0
8.20.4.10.1 Fixed

o Fixed radix sort int64 t bug introduced in [2.10.11]

8.20.4.10.2 Added

o Future value

e Added device partition__three_ way to partition input to three output iterators based on two predicates

8.20.4.10.3 Changed

e The reduce/scan algorithm precision issues in the tests has been resolved for half types.

8.20.4.10.4 Known Issues

e device segmented_radix_sort unit test failing for HIP on Windows

8.20.4.11 rocRAND 2.10.13

rocRAND 2.10.13 for ROCm 5.1.0

8.20.4.11.1 Added

e Generating a random sequence different sizes now produces the same sequence without gaps indepent
of how many values are generated per call.

— Only in the case of XORWOW, MRG32K3A, PHILOX4X32_ 10, SOBOL32 and SOBOL64

— This only holds true if the size in each call is a divisor of the distributions output_ width due to
performance

— Similarly the output pointer has to be aligned to output_ width * sizeof(output_ type)

200 Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipFFT

ROCm Documentation, Release 5.7.1

8.20.4.11.2 Changed

o hipRAND split into a separate package
e Header file installation location changed to match other libraries.

— Using the rocrand.h header file should now use #include <rocrand /rocrand.h>, rather than
#include <rocrand /rocrand.h>

e rocRAND still includes hipRAND using a submodule

— The rocRAND package also sets the provides field with hipRAND, so projects which require
hipRAND can begin to specify it.

8.20.4.11.3 Fixed

e Fix offset behaviour for XORWOW, MRG32K3A and PHILOX4X32_ 10 generator, setting offset now
correctly generates the same sequence starting from the offset.

— Only uniform int and float will work as these can be generated with a single call to the generator

8.20.4.11.4 Known Issues
e kernel xorwow unit test is failing for certain GPU architectures.
8.20.4.12 rocSOLVER 3.17.0
rocSOLVER 3.17.0 for ROCm 5.1.0
8.20.4.12.1 Optimized

¢ Optimized non-pivoting and batch cases of the LU factorization

8.20.4.12.2 Fixed

e Fixed missing synchronization in SYTRF with rocblas_fill lower that could potentially result in in-
correct pivot values.

e Fixed multi-level logging output to file with the ROCSOLVER_LOG_PATH, ROC-
SOLVER_LOG_TRACE_PATH, ROCSOLVER_LOG_BENCH_PATH and ROC-
SOLVER_LOG_PROFILE PATH environment variables.

o Fixed performance regression in the batched LU factorization of tiny matrices

8.20. ROCm 5.1.0 201

https://github.com/ROCmSoftwarePlatform/hipRAND.git

ROCm Documentation, Release 5.7.1

8.20.4.13 rocSPARSE 2.1.0

rocSPARSE 2.1.0 for ROCm 5.1.0

8.20.4.13.1 Added

e gtsv_ interleaved_ batch
e gpsv_interleaved_ batch
e« SpGEMM._ reuse

e Allow copying of mat info struct

8.20.4.13.2 Improved

¢ Optimization for SDDMM

e Allow unsorted matrices in csrgemm multipass algorithm

8.20.4.13.3 Known Issues

e none

8.20.4.14 rocThrust 2.14.0

rocThrust 2.14.0 for ROCm 5.1.0

8.20.4.14.1 Added

o Updated to match upstream Thrust 1.15.0

8.20.4.14.2 Known Issues

e async_ copy, partition, and stable_sort_ by_ key unit tests are failing on HIP on Windows.

8.20.4.15 Tensile 4.32.0

Tensile 4.32.0 for ROCm 5.1.0

202

Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.20.4.15.1 Added

o Better control of parallelism to control memory usage
e Support for multiprocessing on Windows for TensileCreateLibrary
e New JSD metric and metric selection functionality

o Initial changes to support two-tier solution selection

8.20.4.15.2 Optimized

o Optimized runtime of TensileCreateLibraries by reducing max RAM usage
e StoreCInUnroll additional optimizations plus adaptive K support

o« DGEMM NN optimizations with PrefetchGlobalRead(PGR)=2 support

8.20.4.15.3 Changed

o Update Googletest to 1.11.0

8.20.4.15.4 Removed

o Remove no longer supported benchmarking steps

8.21 ROCm 5.0.2

8.21.1 Fixed Defects

The following defects are fixed in the ROCm v5.0.2 release.

8.21.1.1 Issue with hostcall Facility in HIP Runtime

In ROCm v5.0, when using the “assert()” call in a HIP kernel, the compiler may sometimes fail to emit kernel
metadata related to the hostcall facility, which results in incomplete initialization of the hostcall facility in
the HIP runtime. This can cause the HIP kernel to crash when it attempts to execute the “assert()” call.

The root cause was an incorrect check in the compiler to determine whether the hostcall facility is required
by the kernel. This is fixed in the ROCm v5.0.2 release.

The resolution includes a compiler change, which emits the required metadata by default, unless the compiler
can prove that the hostcall facility is not required by the kernel. This ensures that the “assert()” call never
fails.

Note: This fix may lead to breakage in some OpenMP offload use cases, which use print inside a target
region and result in an abort in device code. The issue will be fixed in a future release. Compatibility
Matrix Updates to ROCm Deep Learning Guide

The compatibility matrix in the AMD Deep Learning Guide is updated for ROCm v5.0.2.

8.21. ROCm 5.0.2 203

ROCm Documentation, Release 5.7.1

8.21.2 Library Changes in ROCM 5.0.2

Library Version
hipBLAS 0.49.0
hipCUB 2.10.13
hipFFT 1.0.4

hipSOLVER | 1.2.0
hipSPARSE | 2.0.0

rccl 2.10.3
rocALUTION | 2.0.1
rocBLAS 2.42.0
rocFFT 1.0.13
rocPRIM 2.10.12
rocRAND 2.10.12

rocSOLVER 3.16.0
rocSPARSE 2.0.0

rocThrust 2.13.0
Tensile 4.31.0

8.22 ROCm 5.0.1

8.22.1 Deprecations and Warnings

8.22.1.1 Refactor of HIPCC/HIPCONFIG

In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target
compiler options, target platform, compiler, and runtime appropriately.

In ROCm v5.0.1, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of
the hipcc and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as
experimental. ROCm plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release.
The existing hipcc and hipconfig Perl scripts are renamed to hipce.pl and hipconfig.pl respectively. New top-
level hipce and hipconfig Perl scripts are created, which can switch between the Perl script or the compiled
binary based on the environment variable HIPCC__USE_PERL_SCRIPT.

In ROCm 5.0.1, by default, this environment variable is set to use hipcc and hipconfig through the Perl
scripts.

Subsequently, Perl scripts will no longer be available in ROCm in a future release.

204 Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.0.2
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.0.2

ROCm Documentation, Release 5.7.1

8.22.2 Library Changes in ROCM 5.0.1

Library Version
hipBLAS 0.49.0
hipCUB 2.10.13
hipFFT 1.0.4
hipSOLVER 1.2.0
hipSPARSE 2.0.0
rccl 2.10.3
rocALUTION | 2.0.1
rocBLAS 2.42.0
rocFFT 1.0.13
rocPRIM 2.10.12
rocRAND 2.10.12
rocSOLVER 3.16.0
rocSPARSE 2.0.0
rocThrust 2.13.0
Tensile 4.31.0

8.23 ROCm 5.0.0

8.23.1 What’s New in This Release

8.23.1.1 HIP Enhancements

The ROCm v5.0 release consists of the following HIP enhancements.

8.23.1.1.1 HIP Installation Guide Updates

The HIP Installation Guide is updated to include building HIP from source on the NVIDIA platform.

Refer to the HIP Installation Guide v5.0 for more details.

8.23.1.1.2 Managed Memory Allocation

Managed memory, including the managed___ keyword, is now supported in the HIP combined host/device
compilation. Through unified memory allocation, managed memory allows data to be shared and accessible
to both the CPU and GPU using a single pointer. The allocation is managed by the AMD GPU driver using
the Linux Heterogeneous Memory Management (HMM) mechanism. The user can call managed memory
API hipMallocManaged to allocate a large chunk of HMM memory, execute kernels on a device, and fetch
data between the host and device as needed.

Note

In a HIP application, it is recommended to do a capability check before calling the managed

memory APIs. For example,

8.23. ROCm 5.0.0

205

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.0.1

ROCm Documentation, Release 5.7.1

int managed__memory = 0;

HIPCHECK (hipDeviceGet Attribute(&managed memory,
hipDeviceAttributeManagedMemory,p__gpuDevice));

if (!managed_memory) {
printf (7info: managed memory access not supported on the device %d\n Skipped\n”, p_ gpuDevice);

else {

HIPCHECK (hipSetDevice(p__gpuDevice));
HIPCHECK (hipMallocManaged(&Hmm, N * sizeof(T)));

Note

The managed memory capability check may not be necessary; however, if HMM is not supported,
managed malloc will fall back to using system memory. Other managed memory API calls will,
then, have

Refer to the HIP API documentation for more details on managed memory APIs.
For the application, see

https://github.com/ROCm-Developer-Tools/HIP /blob/rocm-4.5.x /tests /src/runtime Api/memory/
hipMallocManaged.cpp

8.23.1.2 New Environment Variable

The following new environment variable is added in this release:

En- | Value Description

HSA| COQPSomld_1ioddNdrs support more CUs than can reliably be used in a cooperative dis-
or patch. Setting the environment variable HSA_COOP_CU_COUNT to 1 will
1 cause ROCr to return the correct CU count for cooperative groups through the
(de- | HSA__ AMD__AGENT_INFO__COOPERATIVE_COMPUTE_UNIT COUNT attribute
fault| of hsa_agent get info(). Setting HSA__COOP__CU_COUNT to other values, or
is leaving it unset, will cause ROCr to return the same CU count for the attributes
0) HSA_AMD__AGENT_INFO__COOPERATIVE_COMPUTE_UNIT COUNT and
HSA AMD AGENT INFO COMPUTE UNIT COUNT. Future ROCm releases will
make HSA COOP_CU_ COUNT=1 the default.

206 Chapter 8. Changelog

https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.cpp
https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.cpp

ROCm Documentation, Release 5.7.1

8.23.2 Breaking Changes

8.23.2.1 Runtime Breaking Change

Re-ordering of the enumerated type in hip_ runtime_ api.h to better match NV. See below for the difference
in enumerated types.

ROCm software will be affected if any of the defined enums listed below are used in the code. Applications
built with ROCm v5.0 enumerated types will work with a ROCm 4.5.2 driver. However, an undefined
behavior error will occur with a ROCm v4.5.2 application that uses these enumerated types with a ROCm
5.0 runtime.

typedef enum hipDeviceAttribute_t {

hipDeviceAttributeMaxThreadsPerBlock, ///< Maximum number of threads per block.
hipDeviceAttributeMaxBlockDimX, ///< Maximum x-dimension of a block.
hipDeviceAttributeMaxBlockDimY, ///< Maximum y-dimension of a block.
hipDeviceAttributeMaxBlockDimZ, ///< Maximum z-dimension of a block.
hipDeviceAttributeMaxGridDimX, ///< Maximum x-dimension of a grid.
hipDeviceAttributeMaxGridDimY, ///< Maximum y-dimension of a grid.
hipDeviceAttributeMaxGridDimZ, ///< Maximum z-dimension of a grid.
hipDeviceAttributeMaxSharedMemoryPerBlock, ///< Maximum shared memory available per block in
///< bytes.
hipDeviceAttributeTotalConstantMemory, ///< Constant memory size in bytes.
hipDeviceAttributeWarpSize, ///< Warp size in threads.

hipDeviceAttributeMaxRegistersPerBlock, ///< Maximum number of 32-bit registers available to a
///< thread block. This number is shared by all thread
///< blocks simultaneously resident on a
///< multiprocessor.

hipDeviceAttributeClockRate, ///< Peak clock frequency in kilohertz.

hipDeviceAttributeMemoryClockRate, ///< Peak memory clock frequency in kilohertz.

hipDeviceAttributeMemoryBusWidth, ///< Global memory bus width in bits.

hipDeviceAttributeMultiprocessorCount, ///< Number of multiprocessors on the device.

hipDeviceAttributeComputeMode, ///< Compute mode that device is currently in.

hipDeviceAttributeL2CacheSize, ///< Size of L2 cache in bytes. 0 if the device doesn't have L2
///< cache.

hipDeviceAttributeMax ThreadsPerMultiProcessor, ///< Maximum resident threads per
///< multiprocessor.
hipDeviceAttributeComputeCapabilityMajor, ///< Major compute capability version number.
hipDeviceAttributeComputeCapabilityMinor, ///< Minor compute capability version number.
hipDeviceAttributeConcurrentKernels, ///< Device can possibly execute multiple kernels
///< concurrently.
hipDeviceAttributePciBusld, ///< PCI Bus ID.
hipDeviceAttributePciDeviceld, ///< PCI Device ID.
hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, ///< Maximum Shared Memory Per
///< Multiprocessor.

hipDeviceAttributelsMultiGpuBoard, ///< Multiple GPU devices.
hipDeviceAttributeIntegrated, ///< iGPU

hipDeviceAttributeCooperativeLaunch, ///< Support cooperative launch
hipDeviceAttributeCooperativeMultiDeviceLaunch, ///< Support cooperative launch on multiple devices

hipDeviceAttributeMaxTexturelDWidth, ///< Maximum number of elements in 1D images

hipDeviceAttributeMaxTexture2DWidth, ///< Maximum dimension width of 2D images in image elements
hipDeviceAttributeMaxTexture2DHeight, ///< Maximum dimension height of 2D images in image elements
hipDeviceAttributeMaxTexture3DWidth, ///< Maximum dimension width of 3D images in image elements
hipDeviceAttributeMaxTexture3DHeight, ///< Maximum dimensions height of 3D images in image elements
hipDeviceAttributeMaxTexture3DDepth, ///< Maximum dimensions depth of 3D images in image elements

+ hipDeviceAttributeCudaCompatibleBegin = 0,

(continues on next page)

8.23. ROCm 5.0.0 207

ROCm Documentation, Release 5.7.1

(continued from previous page)

- hipDeviceAttributeHdpMemFlushCntl, ///< Address of the HDP_ MEM_COHERENCY_FLUSH__
—CNTL register

- hipDeviceAttributeHdpRegFlushCntl, ///< Address of the HDP_ REG__COHERENCY_FLUSH_CNTL,
—register

+ hipDeviceAttributeEccEnabled = hipDeviceAttributeCudaCompatibleBegin, ///< Whether ECC support is;,
—enabled.

+ hipDeviceAttributeAccessPolicyMaxWindowSize, ///< Cuda only. The maximum size of the window,,
—policy in bytes.

+ hipDeviceAttributeAsyncEngineCount, ///< Cuda only. Asynchronous engines number.

4+ hipDeviceAttributeCanMapHostMemory, ///< Whether host memory can be mapped into,,

—device address space
+ hipDeviceAttributeCanUseHostPointerForRegisteredMem,///< Cuda only. Device can access host registered,
—memory

+ ///< at the same virtual address as the CPU

+ hipDeviceAttributeClockRate, ///< Peak clock frequency in kilohertz.

+ hipDeviceAttributeComputeMode, ///< Compute mode that device is currently in.

4+ hipDeviceAttributeComputePreemptionSupported, ///< Cuda only. Device supports Compute,
—Preemption.

4+ hipDeviceAttributeConcurrentKernels, ///< Device can possibly execute multiple kernels,,
—concurrently.

+ hipDeviceAttributeConcurrentManaged Access, ///< Device can coherently access managed memory
—concurrently with the CPU

+ hipDeviceAttributeCooperativeLaunch, ///< Support cooperative launch

+ hipDeviceAttributeCooperativeMultiDeviceLaunch, ///< Support cooperative launch on multiple devices
+ hipDeviceAttributeDeviceOverlap, ///< Cuda only. Device can concurrently copy memory and,

—execute a kernel.

+ ///< Deprecated. Use instead asyncEngineCount.

+ hipDeviceAttributeDirectManagedMemAccessFromHost, ///< Host can directly access managed memory on
+ ///< the device without migration

+ hipDeviceAttributeGlobalL.1CacheSupported, ///< Cuda only. Device supports caching globals in L1
4+ hipDeviceAttributeHostNativeAtomicSupported, ///< Cuda only. Link between the device and the host,
—supports native atomic operations

+ hipDeviceAttributelntegrated, ///< Device is integrated GPU

4+ hipDeviceAttributeIsMultiGpuBoard, ///< Multiple GPU devices.

+ hipDeviceAttributeKernelExecTimeout, ///< Run time limit for kernels executed on the device
+ hipDeviceAttributeL.2CacheSize, ///< Size of L2 cache in bytes. 0 if the device doesn't have,,
—L2 cache.

4+ hipDeviceAttributeLocal.L1CacheSupported, ///< caching locals in L1 is supported

+ hipDeviceAttributeLuid, ///< Cuda only. 8byte locally unique identifier in 8 bytes.
—Undefined on TCC and non-Windows platforms

+ hipDeviceAttributeLuidDeviceNodeMask, ///< Cuda only. Luid device node mask. Undefined on,
—TCC and non-Windows platforms

4+ hipDeviceAttributeComputeCapabilityMajor, ///< Major compute capability version number.

+ hipDeviceAttributeManagedMemory, ///< Device supports allocating managed memory on,
—this system

+ hipDeviceAttributeMaxBlocksPerMultiProcessor, ///< Cuda only. Max block size per multiprocessor

+ hipDeviceAttributeMaxBlockDimX, ///< Max block size in width.

+ hipDeviceAttributeMaxBlockDimY, ///< Max block size in height.

+ hipDeviceAttributeMaxBlockDimZ, ///< Max block size in depth.

+ hipDeviceAttributeMaxGridDimX, ///< Max grid size in width.

+ hipDeviceAttributeMaxGridDimY, ///< Max grid size in height.

+ hipDeviceAttributeMaxGridDimZ, ///< Max grid size in depth.

+ hipDeviceAttributeMaxSurfacelD, ///< Maximum size of 1D surface.

+ hipDeviceAttributeMaxSurfacel DLayered, ///< Cuda only. Maximum dimensions of 1D layered,,
—surface.

+ hipDeviceAttributeMaxSurface2D, ///< Maximum dimension (width, height) of 2D surface.

(continues on next page)

208 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

(continued from previous page)

4+ hipDeviceAttributeMaxSurface2DLayered,
—surface.

+ hipDeviceAttributeMaxSurface3D,
—surface.

+ hipDeviceAttributeMaxSurfaceCubemap,
—surface.

4+ hipDeviceAttributeMaxSurfaceCubemapLayered,

—layered surface.

+ hipDeviceAttributeMaxTexturelDWidth,
4+ hipDeviceAttributeMaxTexturel DLayered,
—texture.

+ hipDeviceAttributeMaxTexturelDLinear,
< linear texture.

///< Cuda only. Maximum dimensions of 2D layered,
///< Maximum dimension (width, height, depth) of 3D,
///< Cuda only. Maximum dimensions of Cubemap,

///< Cuda only. Maximum dimension of Cubemap,,

///< Maximum size of 1D texture.
///< Cuda only. Maximum dimensions of 1D layered,,

///< Maximum number of elements allocatable in a 1D,

+ ///< Use cudaDeviceGetTexturel DLinearMaxWidth() instead on,,

—Cuda.

+ hipDeviceAttributeMaxTexturel DMipmap,
—texture.

+ hipDeviceAttributeMaxTexture2DWidth,
4+ hipDeviceAttributeMaxTexture2DHeight,
+ hipDeviceAttributeMaxTexture2DGather,
—gather operations performed.

4+ hipDeviceAttributeMaxTexture2DLayered,
—texture.

+ hipDeviceAttributeMaxTexture2DLinear,

—pitch) of 2D textures bound to pitched memory.

+ hipDeviceAttributeMaxTexture2DMipmap,
—mipmapped texture.

4+ hipDeviceAttributeMaxTexture3DWidth,
+ hipDeviceAttributeMaxTexture3DHeight,
+ hipDeviceAttributeMaxTexture3DDepth,

+ hipDeviceAttributeMaxTexture3DAlt,
—texture.

4+ hipDeviceAttributeMaxTextureCubemap,
—texture

+ hipDeviceAttributeMaxTextureCubemapLayered,

—layered texture.
hipDeviceAttributeMaxThreadsDim,
hipDeviceAttributeMaxThreadsPerBlock,

hipDeviceAttributeMaxPitch,
hipDeviceAttributeMemoryBusWidth,
hipDeviceAttributeMemoryClockRate,
hipDeviceAttributeComputeCapabilityMinor,
hipDeviceAttributeMultiGpuBoard GrouplD,
—same multi-GPU board

4+ hipDeviceAttributeMultiprocessorCount,
+ hipDeviceAttributeName,

+ hipDeviceAttributePageableMemoryAccess,
—memory

.

hipDeviceAttributeMaxThreadsPerMultiProcessor,

///< Cuda only. Maximum size of 1D mipmapped

///< Maximum dimension width of 2D texture.
///< Maximum dimension hight of 2D texture.
///< Cuda only. Maximum dimensions of 2D texture if;,

///< Cuda only. Maximum dimensions of 2D layered,
///< Cuda only. Maximum dimensions (width, height,,
///< Cuda only. Maximum dimensions of 2D

///< Maximum dimension width of 3D texture.
///< Maximum dimension height of 3D texture.
///< Maximum dimension depth of 3D texture.
///< Cuda only. Maximum dimensions of alternate 3D,

///< Cuda only. Maximum dimensions of Cubemap,,
///< Cuda only. Maximum dimensions of Cubemap,,

///< Maximum dimension of a block
///< Maximum number of threads per block.
///< Maximum resident threads per multiprocessor.
///< Maximum pitch in bytes allowed by memory copies
///< Global memory bus width in bits.
///< Peak memory clock frequency in kilohertz.
///< Minor compute capability version number.
///< Cuda only. Unique ID of device group on the

///< Number of multiprocessors on the device.

///< Device name.

///< Device supports coherently accessing pageable,,

+ ///< without calling hipHostRegister on it
+ hipDeviceAttributePageableMemoryAccessUsesHostPageTables, ///< Device accesses pageable memory viay,

—the host's page tables

+ hipDeviceAttributePciBusld,

+ hipDeviceAttributePciDeviceld,
+ hipDeviceAttributePciDomainlD,
|

hipDeviceAttributePersistingl.2CacheMaxSize,

///< PCI Bus ID.
///< PCI Device ID.
///< PCI Domain ID.
///< Cudall only. Maximum 12 persisting lines,

(continues on next page)

8.23. ROCm 5.0.0

209

ROCm Documentation, Release 5.7.1

(continued from previous page)

—capacity in bytes

+ hipDeviceAttributeMaxRegistersPerBlock, ///< 32-bit registers available to a thread block. This,
—number is shared

+ ///< by all thread blocks simultaneously resident on a multiprocessor.
+ hipDeviceAttributeMaxRegistersPerMultiprocessor, ///< 32-bit registers available per block.

+ hipDeviceAttributeReservedSharedMemPerBlock, ///< Cudall only. Shared memory reserved by,
—CUDA driver per block.

4+ hipDeviceAttributeMaxSharedMemoryPerBlock, ///< Maximum shared memory available per block,
—in bytes.

4+ hipDeviceAttributeSharedMemPerBlockOptin, ///< Cuda only. Maximum shared memory per block,
—usable by special opt in.

+ hipDeviceAttributeSharedMemPerMultiprocessor, ///< Cuda only. Shared memory available per
—multiprocessor.

+ hipDeviceAttributeSingleToDoublePrecisionPerfRatio, ///< Cuda only. Performance ratio of single precision,,
—to double precision.

+ hipDeviceAttributeStreamPrioritiesSupported, ///< Cuda only. Whether to support stream priorities.
4+ hipDeviceAttributeSurfaceAlignment, ///< Cuda only. Alignment requirement for surfaces

+ hipDeviceAttributeTccDriver, ///< Cuda only. Whether device is a Tesla device using TCC,,
—driver

+ hipDeviceAttributeTextureAlignment, ///< Alignment requirement for textures

4+ hipDeviceAttributeTexturePitchAlignment, ///< Pitch alignment requirement for 2D texture,
—references bound to pitched memory;

4+ hipDeviceAttributeTotalConstantMemory, ///< Constant memory size in bytes.

+ hipDeviceAttributeTotalGlobalMem, ///< Global memory available on devicice.

+ hipDeviceAttributeUnified Addressing, ///< Cuda only. An unified address space shared with the,
—host.

+ hipDeviceAttributeUuid, ///< Cuda only. Unique ID in 16 byte.

+ hipDeviceAttributeWarpSize, ///< Warp size in threads.

- hipDeviceAttributeMaxPitch, ///< Maximum pitch in bytes allowed by memory copies

- hipDeviceAttributeTextureAlignment, ///<Alignment requirement for textures

- hipDeviceAttributeTexturePitchAlignment, ///<Pitch alignment requirement for 2D texture references bound,
—to pitched memory;

- hipDeviceAttributeKernelExecTimeout, ///<Run time limit for kernels executed on the device

- hipDeviceAttributeCanMapHostMemory, ///<Device can map host memory into device address space

- hipDeviceAttributeEccEnabled, ///<Device has ECC support enabled

4+ hipDeviceAttributeCudaCompatibleEnd = 9999,

+ hipDeviceAttributeAmdSpecificBegin = 10000,

- hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, ///< Supports cooperative launch on,,
—multiple

- ///devices with unmatched functions

- hipDeviceAttributeCooperativeMultiDeviceUnmatched GridDim, ///< Supports cooperative launch on,
—multiple

- ///devices with unmatched grid dimensions

- hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, ///< Supports cooperative launch on,,
—multiple

- ///devices with unmatched block dimensions

- hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, ///< Supports cooperative launch on,
—multiple

- ///devices with unmatched shared memories

- hipDeviceAttributeAsicRevision, ///< Revision of the GPU in this device

- hipDeviceAttributeManagedMemory, ///< Device supports allocating managed memory on this system
- hipDeviceAttributeDirectManagedMemAccessFromHost, ///< Host can directly access managed memory on
- /// the device without migration

- hipDeviceAttributeConcurrentManaged Access, ///< Device can coherently access managed memory

(continues on next page)

210 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

(continued from previous page)

- /// concurrently with the CPU

- hipDeviceAttributePageableMemoryAccess, ///< Device supports coherently accessing pageable memory

- /// without calling hipHostRegister on it

- hipDeviceAttributePageableMemoryAccessUsesHostPageTables, ///< Device accesses pageable memory via

- /// the host's page tables

- hipDeviceAttributeCanUseStreamWaitValue ///< '1" if Device supports hipStreamWaitValue32() and

- ///< hipStreamWaitValue64() , '0' otherwise.

+ hipDeviceAttributeClockInstructionRate = hipDeviceAttributeAmdSpecificBegin, ///< Frequency in khz of |
—the timer used by the device-side "clock*”

+ hipDeviceAttributeArch, ///< Device architecture

4+ hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, ///< Maximum Shared Memory
—PerMultiprocessor.

+ hipDeviceAttributeGenArch, ///< Device gen architecture

4+ hipDeviceAttributeGenArchName, ///< Device gcnArch name in 256 bytes

+ hipDeviceAttributeHdpMemFlushCntl, ///< Address of the HDP_ MEM_COHERENCY
—FLUSH CNTL register

4+ hipDeviceAttributeHdpRegFlushCntl, ///< Address of the HDP_ REG__COHERENCY _

—~FLUSH__CNTL register

+ hipDeviceAttributeCooperativeMultiDeviceUnmatched Func, ///< Supports cooperative launch on,,
—multiple

+ ///< devices with unmatched functions

+ hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, ///< Supports cooperative launch on,,
—multiple

+ ///< devices with unmatched grid dimensions

+ hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, ///< Supports cooperative launch on,,
—multiple

+ ///< devices with unmatched block dimensions

+ hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, ///< Supports cooperative launch on,,
—multiple

+ ///< devices with unmatched shared memories
+ hipDeviceAttributelsLargeBar, ///< Whether it is LargeBar

+ hipDeviceAttributeAsicRevision, ///< Revision of the GPU in this device
+ hipDeviceAttributeCanUseStreamWait Value, ///< '1"if Device supports,,
—hipStreamWaitValue32() and

+ ///< hipStreamWaitValue64() , '0" otherwise.

4+ hipDeviceAttribute AmdSpecificEnd = 19999,

+ hipDeviceAttributeVendorSpecificBegin = 20000,
+ // Extended attributes for vendors

} hipDeviceAttribute__t;

enum hipComputeMode {

8.23.3 Known Issues

8.23.3.1 Incorrect dGPU Behavior When Using AMDVBFlash Tool

The AMDVBFlash tool, used for flashing the VBIOS image to dGPU, does not communicate with the ROM
Controller specifically when the driver is present. This is because the driver, as part of its runtime power
management feature, puts the dGPU to a sleep state.

As a workaround, users can run amdgpu.runpm=0, which temporarily disables the runtime power manage-
ment feature from the driver and dynamically changes some power control-related sysfs files.

8.23. ROCm 5.0.0 211

ROCm Documentation, Release 5.7.1

8.23.3.2 Issue with START Timestamp in ROCProfiler
Users may encounter an issue with the enabled timestamp functionality for monitoring one or multiple
counters. ROCProfiler outputs the following four timestamps for each kernel:

e Dispatch

e Start

e« End

e Complete

8.23.3.2.1 Issue

This defect is related to the Start timestamp functionality, which incorrectly shows an earlier time than the
Dispatch timestamp.

To reproduce the issue,
1. Enable timing using the —timestamp on flag.
2. Use the -i option with the input filename that contains the name of the counter(s) to monitor.
3. Run the program.
4. Check the output result file.

8.23.3.2.2 Current behavior

BeginNS is lower than DispatchNS, which is incorrect.

8.23.3.2.3 Expected behavior

The correct order is:
Dispatch < Start < End < Complete

Users cannot use ROCProfiler to measure the time spent on each kernel because of the incorrect timestamp
with counter collection enabled.

8.23.3.2.4 Recommended Workaround

Users are recommended to collect kernel execution timestamps without monitoring counters, as follows:
1. Enable timing using the —timestamp on flag, and run the application.

2. Rerun the application using the -i option with the input filename that contains the name of the
counter(s) to monitor, and save this to a different output file using the -o flag.

3. Check the output result file from step 1.
4. The order of timestamps correctly displays as: DispathNS < BeginNS < EndNS < CompleteNS

5. Users can find the values of the collected counters in the output file generated in step 2.

212 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.23.3.3 Radeon Pro V620 and W6800 Workstation GPUs

8.23.3.3.1 No Support for SMI and ROCDebugger on SRIOV

System Management Interface (SMI) and ROCDebugger are not supported in the SRIOV environment on
any GPU. For more information, refer to the Systems Management Interface documentation.

8.23.4 Deprecations and Warnings

8.23.4.1 ROCm Libraries Changes — Deprecations and Deprecation Removal
e The hipFFT.h header is now provided only by the hipFFT package. Up to ROCm 5.0, users would
get hipFFT.h in the rocFFT package too.

e The GlobalPairwise AMG class is now entirely removed, users should use the PairwiseAMG class in-
stead.

e The rocsparse__spmm signature in 5.0 was changed to match that of rocsparse_spmm__ex. In 5.0, roc-
sparse_spmm__ex is still present, but deprecated. Signature diff for rocsparse spmm rocsparse_spmm

in 5.0

rocsparse_status rocsparse_spmm(rocsparse__handle handle,
rocsparse__operation trans__ A,
rocsparse__operation trans_ B,
const void* alpha,

const rocsparse_spmat_ descr mat__ A,
const rocsparse__dnmat_ descr mat_ B,

const void* beta,

const rocsparse__dnmat_ descr mat_ C,
rocsparse__datatype compute type,
rocsparse_spmm__alg alg,
rocsparse_spmm__stage stage,

size t* buffer_ size,

void* temp_ buffer);

rocSPARSE__spmm in 4.0

rocsparse_status rocsparse_spmm(rocsparse__handle handle,
rocsparse__operation trans_ A,
rocsparse__operation trans_ B,
const void* alpha,

const rocsparse_spmat__descr mat__ A,
const rocsparse_ dnmat_ descr mat_ B,

const void* beta,

const rocsparse__dnmat_ descr mat_ C,
rocsparse__datatype compute_ type,
rocsparse_spmm__alg alg,

size t* buffer_ size,

void* temp__buffer);

8.23. ROCm 5.0.0 213

ROCm Documentation, Release 5.7.1

8.23.4.2 HIP API Deprecations and Warnings

8.23.4.2.1 Warning - Arithmetic Operators of HIP Complex and Vector Types

In this release, arithmetic operators of HIP complex and vector types are deprecated.

e As alternatives to arithmetic operators of HIP complex types, users can use arithmetic operators of
std::complex types.

o As alternatives to arithmetic operators of HIP vector types, users can use the operators of the native
clang vector type associated with the data member of HIP vector types.

During the deprecation, two macros __HIP ENABLE COMPLEX_ OPERATORS and
_HIP_ENABLE_ VECTOR_OPERATORS are provided to allow users to conditionally enable arithmetic
operators of HIP complex or vector types.

Note, the two macros are mutually exclusive and, by default, set to Off.
The arithmetic operators of HIP complex and vector types will be removed in a future release.
Refer to the HIP API Guide for more information.

8.23.4.3 Warning - Compiler-Generated Code Object Version 4 Deprecation

Support for loading compiler-generated code object version 4 will be deprecated in a future release with no
release announcement and replaced with code object 5 as the default version.

The current default is code object version 4.

8.23.4.4 Warning - MIOpenTensile Deprecation

MIOpenTensile will be deprecated in a future release.

8.23.5 Library Changes in ROCM 5.0.0

Library Version
hipBLAS 0.49.0
hipCUB 2.10.13
hipFFT 1.0.4
hipSOLVER 1.2.0
hipSPARSE 2.0.0
rccl 2.10.3
rocALUTION 2.0.1
rocBLAS 2.42.0
rocFFT 1.0.13
rocPRIM 2.10.12
rocRAND 2.10.12
rocSOLVER 3.16.0
rocSPARSE 2.0.0
rocThrust 2.13.0
Tensile 4.31.0

214 Chapter 8. Changelog

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.0.0

ROCm Documentation, Release 5.7.1

8.23.5.1 hipBLAS 0.49.0

hipBLAS 0.49.0 for ROCm 5.0.0

8.23.5.1.1 Added

e Added rocSOLVER functions to hipblas-bench

e Added option ROCM__MATHLIBS API_USE_HIP_COMPLEX to opt-in to use hipFloatComplex
and hipDoubleComplex

e Added compilation warning for future trmm changes
e Added documentation to hipblas.h
o Added option to forgo pivoting for getrf and getri when ipiv is nullptr

e Added code coverage option

8.23.5.1.2 Fixed

o Fixed use of incorrect ‘HIP_ PATH’ when building from source.
e Fixed windows packaging

o Allowing negative increments in hipblas-bench

e Removed boost dependency

8.23.5.2 hipCUB 2.10.13

hipCUB 2.10.13 for ROCm 5.0.0

8.23.5.2.1 Fixed

e Added missing includes to hipcub.hpp

8.23.5.2.2 Added

» Bfloat16 support to test cases (device_reduce & device_radix_sort)
e Device merge sort
e Block merge sort

e API update to CUB 1.14.0

8.23. ROCm 5.0.0 215

ROCm Documentation, Release 5.7.1

8.23.5.2.3 Changed

e The SetupNVCC.cmake automatic target selector select all of the capabalities of all available card for
NVIDIA backend.

8.23.5.3 hipFFT 1.0.4
hipFFT 1.0.4 for ROCm 5.0.0
8.23.5.3.1 Fixed

e Add calls to rocFFT setup/cleanup.

e Cmake fixes for clients and backend support.

8.23.5.3.2 Added
e Added support for Windows 10 as a build target.
8.23.5.4 hipSOLVER 1.2.0
hipSOLVER 1.2.0 for ROCm 5.0.0
8.23.5.4.1 Added

¢ Added functions
— sytrf

* hipsolverSsytrf bufferSize, hipsolverDsytrf bufferSize, hipsolverCsytrf bufferSize, hip-
solverZsytrf bufferSize

* hipsolverSsytrf, hipsolverDsytrf, hipsolverCsytrf, hipsolverZsytrf

8.23.5.4.2 Fixed

o Fixed use of incorrect HIP_ PATH when building from source (#40). Thanks @jakub329homolal

8.23.5.5 hipSPARSE 2.0.0

hipSPARSE 2.0.0 for ROCm 5.0.0

216 Chapter 8. Changelog

https://github.com/jakub329homola

ROCm Documentation, Release 5.7.1

8.23.5.5.1 Added
o Added (conjugate) transpose support for csrmv, hybmv and spmv routines
8.23.5.6 rccl 2.10.3
RCCL 2.10.3 for ROCm 5.0.0
8.23.5.6.1 Added

e Compatibility with NCCL 2.10.3

8.23.5.6.2 Known Issues
e Managed memory is not currently supported for clique-based kernels
8.23.5.7 rocALUTION 2.0.1
rocALUTION 2.0.1 for ROCm 5.0.0
8.23.5.7.1 Changed

e Removed deprecated GlobalPairwiseAMG class, please use PairwiseAMG instead.
e Changed to C++ 14 Standard

8.23.5.7.2 Improved

o Added sanitizer option

o Improved documentation

8.23.5.8 rocBLAS 2.42.0

rocBLAS 2.42.0 for ROCm 5.0.0

8.23.5.8.1 Added

e Added rocblas_ get_ version_ string_ size convenience function

e Added rocblas_ xtrmm_ outofplace, an out-of-place version of rocblas_xtrmm

e Added hpl and trig initialization for gemm_ ex to rocblas-bench

e Added source code gemm. It can be used as an alternative to Tensile for debugging and development

e Added option ROCM__MATHLIBS API_USE HIP_ COMPLEX to opt-in to use hipFloatComplex
and hipDoubleComplex

8.23. ROCm 5.0.0 217

ROCm Documentation, Release 5.7.1

8.23.5.8.2 Optimizations

e Improved performance of non-batched and batched single-precision GER for size m > 1024. Perfor-
mance enhanced by 5-10% measured on a MI100 (gfx908) GPU.

e Improved performance of non-batched and batched HER for all sizes and data types. Performance
enhanced by 2-17% measured on a MI100 (gfx908) GPU.

8.23.5.8.3 Changed

« Instantiate templated rocBLAS functions to reduce size of librocblas.so
e Removed static library dependency on msgpack

e Removed boost dependencies for clients

8.23.5.8.4 Fixed

« Option to install script to build only rocBLAS clients with a pre-built rocBLAS library

e Correctly set output of nrm2 batched ex and nrm2_strided batched ex when given bad input
e Fix for dgmm with side == rocblas_side_ left and a negative incx

e Fixed out-of-bounds read for small trsm

o Fixed numerical checking for tbmv_ strided batched

8.23.5.9 rocFFT 1.0.13

rocFFT 1.0.13 for ROCm 5.0.0

8.23.5.9.1 Optimizations

e Improved many plans by removing unnecessary transpose steps.
e Optimized scheme selection for 3D problems.

— Imposed less restrictions on 3D_ BLOCK__RC selection. More problems can use 3D_ BLOCK__RC

and have some performance gain.

— Enabled 3D__RC. Some 3D problems with SBCC-supported z-dim can use less kernels and get
benefit.

— Force —length 336 336 56 (dp) use faster 3D__RC to avoid it from being skipped by conservative
threshold test.

o Optimized some even-length R2C/C2R cases by doing more operations in-place and combining pre/post
processing into Stockham kernels.

¢ Added radix-17.

218 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.23

8.23

8.23

.5.9.2 Added

Added new kernel generator for select fused-2D transforms.

.5.9.3 Fixed

Improved large 1D transform decompositions.

.5.10 rocPRIM 2.10.12

rocPRIM 2.10.12 for ROCm 5.0.0

8.23

8.23

8.23

.5.10.1 Fixed

Enable bfloat16 tests and reduce threshold for bfloat16
Fix device scan limit_size feature

Non-optimized builds no longer trigger local memory limit errors

.5.10.2 Added

Added scan size limit feature

Added reduce size limit feature

Added transform size limit feature

Add block load_striped and block store_ striped

Add gather_to_ blocked to gather values from other threads into a blocked arrangement

The block sizes for device merge sorts initial block sort and its merge steps are now separate in its
kernel config

— the block sort step supports multiple items per thread

.5.10.3 Changed

size_ limit for scan, reduce and transform can now be set in the config struct instead of a parameter

Device_scan and device_segmented_scan: inclusive_scan now uses the input-type as accumulator-
type, exclusive_scan uses initial-value-type.

— This particularly changes behaviour of small-size input types with large-size output types (e.g.
short input, int output).

— And low-res input with high-res output (e.g. float input, double output)
Revert old Fiji workaround, because they solved the issue at compiler side
Update README cmake minimum version number

Block sort support multiple items per thread

8.23.

ROCm 5.0.0 219

ROCm Documentation, Release 5.7.1

— currently only powers of two block sizes, and items per threads are supported and only for full
blocks

e Bumped the minimum required version of CMake to 3.16

8.23.5.10.4 Known Issues

e Unit tests may soft hang on MI200 when running in hipMallocManaged mode.
e device segmented_radix_ sort, device_scan unit tests failing for HIP on Windows
e ReduceEmptyInput cause random faulire with bfloat16

8.23.5.11 rocRAND 2.10.12

rocRAND 2.10.12 for ROCm 5.0.0

8.23.5.11.1 Changed

e No updates or changes for ROCm 5.0.0.

8.23.5.12 rocSOLVER 3.16.0

rocSOLVER 3.16.0 for ROCm 5.0.0

8.23.5.12.1 Added

e Symmetric matrix factorizations:
— LASYF
— SYTF2, SYTRF (with batched and strided batched versions)
o Added rocsolver get_ version_ string size to help with version string queries
e Added rocblas_layer mode_ex and the ability to print kernel calls in the trace and profile logs
e Expanded batched and strided_batched sample programs.

8.23.5.12.2 Optimized

e Improved general performance of LU factorization

e Increased parallelism of specialized kernels when compiling from source, reducing build times on multi-
core systems.

220 Chapter 8. Changelog

ROCm Documentation, Release 5.7.1

8.23.5.12.3 Changed
e The rocsolver-test client now prints the rocSOLVER version used to run the tests, rather than the

version used to build them

e The rocsolver-bench client now prints the rocSOLVER version used in the benchmark

8.23.5.12.4 Fixed

¢ Added missing stdint.h include to rocsolver.h

8.23.5.13 rocSPARSE 2.0.0

rocSPARSE 2.0.0 for ROCm 5.0.0

8.23.5.13.1 Added

e csrmv, coomv, ellmv, hybmv for (conjugate) transposed matrices

e csrmv for symmetric matrices

8.23.5.13.2 Changed

e spmm_ ex is now deprecated and will be removed in the next major release

8.23.5.13.3 Improved

e Optimization for gtsv
8.23.5.14 rocThrust 2.13.0
rocThrust 2.13.0 for ROCm 5.0.0

8.23.5.14.1 Added

e Updated to match upstream Thrust 1.13.0
e Updated to match upstream Thrust 1.14.0
e Added async scan

8.23. ROCm 5.0.0 221

ROCm Documentation, Release 5.7.1

8.23.5.14.2 Changed

e Scan algorithms: inclusive_scan now uses the input-type as accumulator-type, exclusive scan uses
initial-value-type.

— This particularly changes behaviour of small-size input types with large-size output types (e.g.
short input, int output).

— And low-res input with high-res output (e.g. float input, double output)

8.23.5.15 Tensile 4.31.0
Tensile 4.31.0 for ROCm 5.0.0
8.23.5.15.1 Added

 DirectToLds support (x2/x4)
e DirectToVgpr support for DGEMM
o Parameter to control number of files kernels are merged into to better parallelize kernel compilation

e FP16 alternate implementation for HPA HGEMM on aldebaran

8.23.5.15.2 Optimized

¢ Add DGEMM NN custom kernel for HPL on aldebaran

8.23.5.15.3 Changed

o Update tensile_ client executable to std=c++14

8.23.5.15.4 Removed

¢« Remove unused old Tensile client code

8.23.5.15.5 Fixed

e Fix hipErrorInvalidHandle during benchmarks

e Fix addrVgpr for atomic GSU

e Fix for Python 3.8: add case for Constant nodeType

e Fix architecture mapping for gfx1011 and gfx1012

« Fix PrintSolutionRejectionReason verbiage in KernelWriter.py

e Fix vgpr alignment problem when enabling flat buffer load

222 Chapter 8. Changelog

CHAPTER

NINE

GPU SUPPORT AND OS COMPATIBILITY (LINUX)

9.1 Supported Linux Distributions

AMD ROCm™ Platform supports the following Linux distributions.

Supported

Distribution Processor Architectures | Validated Kernel | Support
CentOS 7.9 x86-64 3.10
RHEL 7.9 x86-64 3.10
RHEL 8.7 x86-64 4.18
RHEL 8.8 x86-64 4.18
RHEL 9.1 x86-64 5.14
RHEL 9.2 x86-64 5.14
SLES 15 SP4 x86-64 5.14.21
SLES 15 SP5 x86-64 5.14.21
Ubuntu 20.04.5 | x86-64 5.15
Ubuntu 20.04.6 | x86-64 5.15
Ubuntu 22.04.2 | x86-64 5.19
Ubuntu 22.04.3 | x86-64 6.2

New in version 5.7.0:

e Ubuntu 22.04.3 support was added.

Unsupported
Distribution Processor Architectures | Validated Kernel Support
RHEL 9.0 x86-64 5.14
RHEL 8.6 x86-64 5.14
SLES 15 SP3 x86-64 5.3
Ubuntu 22.04.0 | x86-64 5.15 LTS, 5.17 OEM
Ubuntu 20.04.4 | x86-64 5.13 HWE, 5.13 OEM
Ubuntu 22.04.1 | x86-64 5.15 LTS

e : Supported - AMD performs full testing of all ROCm components on distro GA image.

e : Unsupported - AMD no longer performs builds and testing on these previously supported distro GA
images.

223

ROCm Documentation, Release 5.7.1

9.2 Virtualization Support

ROCm supports virtualization for select GPUs only as shown below.

Hypervi- | Ver- GPU | Validated Guest OS (validated kernel)
sor sion
VMWare | ESXi8 | MI250 | Ubuntu 20.04 (5.15.0-56-generic)

VMWare | ESXi8 | MI210 | Ubuntu 20.04 (5.15.0-56-generic), SLES 15 SP4 (5.14.21-150400.24.
18-default)

VMWare | ESXi7 | MI210 | Ubuntu 20.04 (5.15.0-56-generic), SLES 15 SP4 (5.14.21-150400.24.
18-default)

9.3 Linux Supported GPUs

The table below shows supported GPUs for Instinct™, Radeon Pro™ and Radeon™ GPUs. Please click
the tabs below to switch between GPU product lines. If a GPU is not listed on this table, the GPU is not
officially supported by AMD.

AMD Instinct™

Use Driver Shipped with ROCm

Product Name Architecture | LLVM Target | Support
AMD Instinct™ MI250X | CDNA2 gfx90a
AMD Instinct™ MI250 CDNA2 gfx90a
AMD Instinct™ MI210 CDNA2 gfx90a
AMD Instinct™ MI100 CDNA gfx908
AMD Instinct™ MI50 GCN5.1 gfx906
AMD Instinct™ MI25 GCN5.0 gfx900

Radeon Pro™

Use Radeon Pro Driver

Name Architecture | LLVM Target | Support
AMD Radeon™ Pro W6800 | RDNA2 gfx1030

AMD Radeon™ Pro V620 RDNA2 gfx1030

AMD Radeon™ Pro VII GCN5.1 gfx906

224 Chapter 9. GPU Support and OS Compatibility (Linux)

https://www.llvm.org/docs/AMDGPUUsage.html#processors
https://www.amd.com/en/support/linux-drivers
https://www.llvm.org/docs/AMDGPUUsage.html#processors

ROCm Documentation, Release 5.7.1

Radeon™

Use Radeon Pro Driver

Name

Architecture

LLVM Target

Support

AMD Radeon™ VII

GCN5.1

2fx906

9.3.1 Support Status

e : Supported - AMD enables these GPUs in our software distributions for the corresponding ROCm

product.

e : Deprecated - Support will be removed in a future release.

e : Unsupported - This configuration is not enabled in our software distributions.

9.4 CPU Support

ROCm requires CPUs that support PCIe™ Atomics. Modern CPUs after the release of 1st generation AMD
Zen CPU and Intel™ Haswell support PCle Atomics.

9.4. CPU Support

225

https://www.amd.com/en/support/linux-drivers
https://www.llvm.org/docs/AMDGPUUsage.html#processors

ROCm Documentation, Release 5.7.1

226 Chapter 9. GPU Support and OS Compatibility (Linux)

CHAPTER

TEN

10.1 Supported SKUs

GPU AND OS SUPPORT (WINDOWS)

AMD ROCm™ Platform supports the following Windows SKU.

Distribution Processor Architectures | Validated update
Windows 10 x86-64 22H2 (GA)
Windows 11 x86-64 22H2 (GA)
Windows Server 2022 | x86-64

10.2 Windows Supported GPUs

The table below shows supported GPUs for Radeon Pro™ and Radeon™ GPUs. Please click the tabs below
to switch between GPU product lines. If a GPU is not listed on this table, the GPU is not officially supported

by AMD.

Radeon Pro™

Name Architecture | LLVM Target | Runtime | HIP SDK
AMD Radeon Pro™ W7900 | RDNA3 gfx1100

AMD Radeon Pro™ W7800 | RDNA3 gfx1100

AMD Radeon Pro™ W6800 | RDNA2 gfx1030

AMD Radeon Pro™ W6600 | RDNA2 gfx1032

AMD Radeon Pro™ W5500 | RDNA1 gfx1012

AMD Radeon Pro™ VII GCN5.1 gfx906

227

https://www.llvm.org/docs/AMDGPUUsage.html#processors

ROCm Documentation, Release 5.7.1

Radeon™
Name Architecture | LLVM Target | Runtime | HIP SDK
AMD Radeon™ RX 7900 XTX | RDNA3 gfx1100
AMD Radeon™ RX 7900 XT RDNA3 gfx1100
AMD Radeon™ RX 7600 RDNA3 gfx1102
AMD Radeon™ RX 6950 XT RDNA2 gfx1030
AMD Radeon™ RX 6900 XT RDNA2 gfx1030
AMD Radeon™ RX 6800 XT RDNA2 gfx1030
AMD Radeon™ RX 6800 RDNA2 gfx1030
AMD Radeon™ RX 6750 RDNA2 gfx1032
AMD Radeon™ RX 6700 XT RDNA2 gfx1032
AMD Radeon™ RX 6700 RDNA2 gfx1032
AMD Radeon™ RX 6650 XT RDNA2 gfx1032
AMD Radeon™ RX 6600 XT RDNA2 gfx1032
AMD Radeon™ RX 6600 RDNA2 gfx1032

10.2.1 Component Support
ROCm components are described in the reference page. Support on Windows is provided with two levels on
enablement.

o Runtime: Runtime enables the use of the HIP/OpenCL runtimes only.

o HIP SDK: Runtime plus additional components refer to libraries found under Math Libraries and C++
Primitive Libraries. Some Math Libraries are Linux exclusive, please check the library details.

10.2.2 Support Status

e : Supported - AMD enables these GPUs in our software distributions for the corresponding ROCm
product.

e : Deprecated - Support will be removed in a future release.

e : Unsupported - This configuration is not enabled in our software distributions.

10.3 CPU Support

ROCm requires CPUs that support PCIe™ Atomics. Modern CPUs after the release of 1st generation AMD
Zen CPU and Intel™ Haswell support PCle Atomics.

228 Chapter 10. GPU and OS Support (Windows)

https://www.llvm.org/docs/AMDGPUUsage.html#processors

CHAPTER

ELEVEN

ROCM RELEASE HISTORY

Version | Release Date
5.6.0 Jun 28, 2023
5.5.1 May 24, 2023
5.5.0 May 1, 2023
5.4.3 Feb 7, 2023
5.4.2 Jan 13, 2023
5.4.1 Dec 15, 2022
5.4.0 Nov 30, 2022
5.3.3 Nov 17, 2022
5.3.2 Nov 9, 2022
5.3.0 Oct 4, 2022
5.2.3 Aug 18, 2022
5.2.1 Jul 21, 2022
5.2.0 Jun 28, 2022
5.1.3 May 20, 2022
5.1.1 Apr 8, 2022
5.1.0 Mar 30, 2022
5.0.2 Mar 4, 2022
5.0.1 Feb 16, 2022
5.0.0 Feb 9, 2022

229

https://rocm.docs.amd.com/en/docs-5.6.0/
https://rocm.docs.amd.com/en/docs-5.5.1/
https://rocm.docs.amd.com/en/docs-5.5.0/
https://rocm.docs.amd.com/en/docs-5.4.3/
https://rocm.docs.amd.com/en/docs-5.4.2/
https://rocm.docs.amd.com/en/docs-5.4.1/
https://rocm.docs.amd.com/en/docs-5.4.0/
https://rocm.docs.amd.com/en/docs-5.3.3/
https://rocm.docs.amd.com/en/docs-5.3.2/
https://rocm.docs.amd.com/en/docs-5.3.0/
https://rocm.docs.amd.com/en/docs-5.2.3/
https://rocm.docs.amd.com/en/docs-5.2.1/
https://rocm.docs.amd.com/en/docs-5.2.0/
https://rocm.docs.amd.com/en/docs-5.1.3/
https://rocm.docs.amd.com/en/docs-5.1.1/
https://rocm.docs.amd.com/en/docs-5.1.0/
https://rocm.docs.amd.com/en/docs-5.0.2/
https://rocm.docs.amd.com/en/docs-5.0.1/
https://rocm.docs.amd.com/en/docs-5.0.0/

ROCm Documentation, Release 5.7.1

230 Chapter 11. ROCm Release History

CHAPTER

TWELVE

COMPATIBILITY

User space & Kernel Fusion Driver Forward and backward compatibility of ROCm user space components
and the kernel space Kernel Fusion Driver (KFD).

e User/Kernel-Space Support Matrix
Docker Image Support ROCm releases several Docker container images.
e Docker Image Support Matrix

3rd Party Support Several 3rd party libraries ship with ROCm enablement as well as several ROCm
components provide interfaces compatible with 3rd party solutions.

e 3rd Party Support Matrix

12.1 User/Kernel-Space Support Matrix

ROCm™ provides forward and backward compatibility between the Kernel Fusion Driver (KFD) and its
user space software for +/- 2 releases. This table shows the compatibility combinations that are currently
supported.

KFD | Tested user space versions
5.0.2 | 5.1.0, 5.2.0
5.1.0 | 5.0.2

5.1.3 | 5.2.0, 5.3.0
5.2.0 | 5.0.2,5.1.3
5.2.3 | 5.3.0, 5.4.0
5.3.0 | 5.1.3,5.2.3
5.3.3 | 5.4.0,5.5.0
5.4.0 | 5.2.3,5.3.3
5.4.3 | 5.5.0, 5.6.0
5.4.4 | 5.5.0

5.5.0 | 5.3.3,5.4.3
5.5.1 | 5.6.0, 5.7.0
5.6.0 | 5.4.3,5.5.1
5.6.1 | 5.7.0

5.7.0 | 5.5.0, 5.6.1
5.7.1 | 5.5.0, 5.6.1

231

ROCm Documentation, Release 5.7.1

12.2 Docker image support matrix

AMD validates and publishes PyTorch and TensorFlow containers on dockerhub. The following tags, and
associated inventories, are validated with ROCm 5.7.

PyTorch
Ubuntu 20.04

Tag: rocm/pytorch:rocm5.7_ubuntu20.04_py3.9_pytorch_staging
o Inventory:
- ROCm 5.7
— Python 3.9
— Torch 2.1.0
— Apex 0.1
— Torchvision 0.16.0
— Tensorboard 2.14.0
- MAGMA
- UCX 1.10.0
— OMPI 4.0.3
— OFED 5.4.3
Tag: Ubuntu rocm/pytorch:rocmb.7 ubuntu20.04 py3.9 pytorch 1.12.1
e Inventory:
— ROCm 5.7
— Python 3.9
— Torch 1.12.1
— Apex 0.1
— Torchvision 0.13.1
— Tensorboard 2.14.0
- MAGMA
- UCX 1.10.0
- OMPI 4.0.3
- OFED 5.4.3
Tag: Ubuntu rocm/pytorch:rocm5.7 _ubuntu20.04_py3.9 pytorch 1.13.1
e Inventory:
— ROCm 5.7
— Python 3.9
— Torch 1.12.1

232 Chapter 12. Compatibility

https://hub.docker.com/r/rocm/pytorch
https://hub.docker.com/r/rocm/tensorflow
https://hub.docker.com/layers/rocm/pytorch/rocm5.7_ubuntu20.04_py3.9_pytorch_2.0.1/images/sha256-4dd86046e5f777f53ae40a75ecfc76a5e819f01f3b2d40eacbb2db95c2f971d4)
https://repo.radeon.com/rocm/apt/5.7/
https://www.python.org/downloads/release/python-3918/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/rocm5.7_internal_testing
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/release/0.16
https://github.com/tensorflow/tensorboard/tree/2.14
https://bitbucket.org/icl/magma/src/master/
https://github.com/openucx/ucx/tree/v1.10.0
https://github.com/open-mpi/ompi/tree/v4.0.3
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://hub.docker.com/layers/rocm/pytorch/rocm5.7_ubuntu20.04_py3.9_pytorch_1.12.1/images/sha256-e67db9373c045a7b6defd43cc3d067e7d49fd5d380f3f8582d2fb219c1756e1f
https://repo.radeon.com/rocm/apt/5.7/
https://www.python.org/downloads/release/python-3918/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/release/1.12
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/v0.13.1
https://github.com/tensorflow/tensorboard/tree/2.14
https://bitbucket.org/icl/magma/src/master/
https://github.com/openucx/ucx/tree/v1.10.0
https://github.com/open-mpi/ompi/tree/v4.0.3
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://hub.docker.com/layers/rocm/pytorch/rocm5.7_ubuntu20.04_py3.9_pytorch_1.13.1/images/sha256-ed99d159026093d2aaf5c48c1e4b0911508773430377051372733f75c340a4c1
https://repo.radeon.com/rocm/apt/5.7/
https://www.python.org/downloads/release/python-3918/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/release/1.13

ROCm Documentation, Release 5.7.1

— Apex 0.1
— Torchvision 0.14.0
— Tensorboard 2.12.0
- MAGMA
- UCX 1.10.0
- OMPI 4.0.3
- OFED 5.4.3
Tag: Ubuntu rocm/pytorch:rocm5.7 _ubuntu20.04_py3.9 pytorch 2.0.1
o Inventory:
- ROCm 5.7
— Python 3.9
— Torch 2.0.1
— Apex 0.1
— Torchvision 0.15.2
— Tensorboard 2.14.0
- MAGMA
- UCX 1.10.0
- OMPI 4.0.3
— OFED 5.4.3

CentOS 7

Tag: rocm/pytorch:rocmb.7_centos7_py3.9 pytorch staging

e Inventory:

e ROCm 5.7

e Python 3.9

o Torch 2.1.0

e Apex 0.1

o Torchvision 0.16.0

« MAGMA

12.2. Docker image support matrix 233

https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/v0.14.0
https://github.com/tensorflow/tensorboard/tree/2.12.0
https://bitbucket.org/icl/magma/src/master/
https://github.com/openucx/ucx/tree/v1.10.0
https://github.com/open-mpi/ompi/tree/v4.0.3
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://hub.docker.com/layers/rocm/pytorch/rocm5.7_ubuntu20.04_py3.9_pytorch_2.0.1/images/sha256-4dd86046e5f777f53ae40a75ecfc76a5e819f01f3b2d40eacbb2db95c2f971d4
https://repo.radeon.com/rocm/apt/5.7/
https://www.python.org/downloads/release/python-3918/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/release/2.0
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/release/0.15
https://github.com/tensorflow/tensorboard/tree/2.14
https://bitbucket.org/icl/magma/src/master/
https://github.com/openucx/ucx/tree/v1.10.0
https://github.com/open-mpi/ompi/tree/v4.0.3
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://hub.docker.com/layers/rocm/pytorch/rocm5.7_centos7_py3.9_pytorch_staging/images/sha256-92240cdf0b4aa7afa76fc78be995caa19ee9c54b5c9f1683bdcac28cedb58d2b
https://repo.radeon.com/rocm/yum/5.7/
https://www.python.org/downloads/release/python-3918/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/rocm5.7_internal_testing
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/release/0.16
https://bitbucket.org/icl/magma/src/master/

ROCm Documentation, Release 5.7.1

TensorFlow
Ubuntu 20.04

Tag: rocmb.7-t{2.12-dev
o Inventory:
- ROCm 5.7
— Python 3.9
— tensorflow-rocm 2.12.1
— Tensorboard 2.12.3
Tag: rocmb.7-tf2.13-dev
e Inventory:
— ROCm 5.7
— Python 3.9

tensorflow-rocm 2.13.0

Tensorboard 2.13.0

12.3 3rd Party Support Matrix

ROCm™ supports various 3rd party libraries and frameworks. Supported versions are tested and known to
work. Non-supported versions of 3rd parties may also work, but aren’t tested.

12.3.1 Deep Learning

ROCm releases support the most recent and two prior releases of PyTorch and TensorFlow.

ROCm | PyTorch TensorFlow
502 | 1.8, 1.9, 1.10 2.6, 2.7, 2.8
5.1.3 1.9, 1.10, 1.11 2.7,2.8,2.9
5.2.x 1.10, 1.11, 1.12 2.8,2.9, 29

53x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.8, 2.9, 2.10
54x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.8, 2.9, 2.10, 2.11
55x | 1.10.1, 1.11, 1.12.1, 1.13 | 2.10, 2.11, 2.13
56x | 1.12.1, 1.13, 2.0 2.12, 2.13

57x | 1.12.1, 1.13, 2.0 2.12, 2.13

234 Chapter 12. Compatibility

https://hub.docker.com/layers/rocm/tensorflow/rocm5.7-tf2.12-dev/images/sha256-e0ac4d49122702e5167175acaeb98a79b9500f585d5e74df18facf6b52ce3e59
https://repo.radeon.com/rocm/apt/5.7/
https://www.python.org/downloads/release/python-3918/
https://pypi.org/project/tensorflow-rocm/2.12.1.570/
https://github.com/tensorflow/tensorboard/tree/2.12
https://hub.docker.com/layers/rocm/tensorflow/rocm5.7-tf2.13-dev/images/sha256-6f995539eebc062aac2b53db40e2b545192d8b032d0deada8c24c6651a7ac332
https://repo.radeon.com/rocm/apt/5.7/
https://www.python.org/downloads/release/python-3918/
https://pypi.org/project/tensorflow-rocm/2.13.0.570/
https://github.com/tensorflow/tensorboard/tree/2.13
https://github.com/pytorch/pytorch/releases/
https://github.com/tensorflow/tensorflow/releases/

ROCm Documentation, Release 5.7.1

12.3.2 Communication libraries

ROCm supports OpenUCX an “an open-source, production-grade communication framework for data-centric

and high-performance applications”.

UCX version

ROCm 5.4 and older

ROCm 5.5 and newer

-1.14.0

COMPATIBLE

INCOMPATIBLE

1.14.1+

COMPATIBLE

COMPATIBLE

The Unified Collective Communication Library UCC also has support for ROCm devices.

UCC version

ROCm 5.5 and older

ROCm 5.6 and newer

-1.1.0

COMPATIBLE

INCOMPATIBLE

1.2.0+

COMPATIBLE

COMPATIBLE

12.3.3 Algorithm libraries
ROCm releases provide algorithm libraries with interfaces compatible with contemporary CUDA / NVIDIA
HPC SDK alternatives.

e Thrust — rocThrust

« CUB — hipCUB

ROCm | Thrust / CUB | HPC SDK
5.0.2 1.14 21.9
5.1.3 1.15 22.1
9.2.x 1.15 22.2,22.3
5.3.x 1.16 22.7
0.4.x 1.16 22.9
5.5.x 1.17 22.9
9.6.x 1.17.2 22.9
5.7.x 1.17.2 22.9

For the latest documentation of these libraries, refer to the associated documentation.

12.3. 3rd Party Support Matrix 235

https://openucx.org/
https://https://github.com/openucx/ucc

ROCm Documentation, Release 5.7.1

236 Chapter 12. Compatibility

CHAPTER

THIRTEEN

LICENSING TERMS

ROCm™ is released by Advanced Micro Devices, Inc. and is licensed per component separately. The
following table is a list of ROCm components with links to their respective license terms. These components
may include third party components subject to additional licenses. Please review individual repositories for
more information. The table shows ROCm components, the name of license and link to the license terms.
The table is ordered to follow ROCm’s manifest file.

Component License
AMDMIGraphX MIT
HIPCC MIT
HIPIFY MIT
HIP MIT
MIOpenGEMM MIT
MIOpen MIT
MIVisionX MIT
RCP MIT

ROCK-Kernel-Driver

GPL 2.0 WITH Linux-syscall-note

ROCR-Runtime

The University of Illinois/NCSA

ROCT-Thunk-Interface

MIT

ROCeclr MIT
ROCdbgapi MIT
ROCgdb GNU General Public License v2.0

ROCm-CompilerSupport

The University of Illinois/NCSA

ROCm-Device-Libs

The University of Illinois/NCSA

ROCm-OpenCL-Runtime/api/opencl/khronos/icd | Apache 2.0
ROCm-OpenCL-Runtime MIT
ROCmValidationSuite MIT
Tensile MIT
aomp-extras MIT

aomp Apache 2.0
atmi MIT
clang-ocl MIT

flang Apache 2.0
half MIT
hipBLAS MIT
hipCUB Custom
hipFFT MIT
hipSOLVER MIT
hipSPARSEL# MIT
hipSPARSE MIT

continues on next page

237

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/blob/develop/LICENSE
https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/HIPIFY/
https://github.com/ROCm-Developer-Tools/HIPIFY/blob/amd-staging/LICENSE.txt
https://github.com/ROCm-Developer-Tools/HIP/
https://github.com/ROCm-Developer-Tools/HIP/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/blob/master/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/MIOpen/
https://github.com/ROCmSoftwarePlatform/MIOpen/blob/master/LICENSE.txt
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/master/LICENSE.txt
https://github.com/GPUOpen-Tools/radeon_compute_profiler/
https://github.com/GPUOpen-Tools/radeon_compute_profiler/blob/master/LICENSE
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/COPYING
https://github.com/RadeonOpenCompute/ROCR-Runtime/
https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/LICENSE.txt
https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/
https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/blob/master/LICENSE.md
https://github.com/ROCm-Developer-Tools/ROCclr/
https://github.com/ROCm-Developer-Tools/ROCclr/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/ROCdbgapi/
https://github.com/ROCm-Developer-Tools/ROCdbgapi/blob/amd-master/LICENSE.txt
https://github.com/ROCm-Developer-Tools/ROCgdb/
https://github.com/ROCm-Developer-Tools/ROCgdb/blob/amd-master/COPYING
https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/
https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/blob/amd-stg-open/LICENSE.txt
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/amd-stg-open/LICENSE.TXT
https://github.com/KhronosGroup/OpenCL-ICD-Loader/
https://github.com/KhronosGroup/OpenCL-ICD-Loader/blob/main/LICENSE
https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/
https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/master/LICENSE
https://github.com/ROCmSoftwarePlatform/Tensile/
https://github.com/ROCmSoftwarePlatform/Tensile/blob/develop/LICENSE.md
https://github.com/ROCm-Developer-Tools/aomp-extras/
https://github.com/ROCm-Developer-Tools/aomp-extras/blob/aomp-dev/LICENSE
https://github.com/ROCm-Developer-Tools/aomp/
https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/LICENSE
https://github.com/RadeonOpenCompute/atmi/
https://github.com/RadeonOpenCompute/atmi/blob/master/LICENSE.txt
https://github.com/RadeonOpenCompute/clang-ocl/
https://github.com/RadeonOpenCompute/clang-ocl/blob/master/LICENSE
https://github.com/ROCm-Developer-Tools/flang/
https://github.com/ROCm-Developer-Tools/flang/blob/master/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/half/
https://github.com/ROCmSoftwarePlatform/half/blob/master/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/hipBLAS/
https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipCUB/
https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/hipFFT/
https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipSOLVER/
https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipSPARSELt/
https://github.com/ROCmSoftwarePlatform/hipSPARSELt/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipSPARSE/
https://github.com/ROCmSoftwarePlatform/hipSPARSE/blob/develop/LICENSE.md

ROCm Documentation, Release 5.7.1

Table 13.1 — continued from previous page

Component License

hipTensor MIT

hipamd MIT

hipfort MIT

llvm-project Apache

recl Custom

rdc MIT

rocALUTION MIT

rocBLAS MIT

rocFFT MIT

rocPRIM MIT

rocRAND MIT

rocSOLVER BSD-2-Clause

rocSPARSE MIT

rocThrust Apache 2.0

rocWMMA MIT

rocm-cmake MIT

rocm_bandwidth test The University of Illinois/NCSA
rocm__smi_ lib The University of Illinois/NCSA
rocminfo The University of Illinois/NCSA
rocprofiler MIT

rocr _debug agent The University of Illinois/NCSA
roctracer MIT

rocm-llvm-alt AMD Proprietary License

Open sourced ROCm components are released via public GitHub repositories, packages on
https://repo.radeon.com and other distribution channels. Proprietary products are only available on
https://repo.radeon.com. Currently, only one component of ROCm, rocm-llvim-alt is governed by a propri-
etary license. Proprietary components are organized in a proprietary subdirectory in the package repositories
to distinguish from open sourced packages.

The additional terms and conditions below apply to your use of ROCm technical documentation.
©2023 Advanced Micro Devices, Inc. All rights reserved.

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and
may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences be-
tween differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer
system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes
no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to
revise this information and to make changes from time to time to the content hereof without obligation of
AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED “AS IS” AMD MAKES NO REPRESENTATIONS OR WAR-
RANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY
FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMA-
TION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD
BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED
HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro Devices,

238 Chapter 13. Licensing Terms

https://github.com/ROCmSoftwarePlatform/hipTensor
https://github.com/ROCmSoftwarePlatform/hipTensor/blob/develop/LICENSE
https://github.com/ROCm-Developer-Tools/hipamd/
https://github.com/ROCm-Developer-Tools/hipamd/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/hipfort/
https://github.com/ROCmSoftwarePlatform/hipfort/blob/master/LICENSE
https://github.com/ROCm-Developer-Tools/llvm-project/
https://github.com/ROCm-Developer-Tools/llvm-project/blob/main/LICENSE.TXT
https://github.com/ROCmSoftwarePlatform/rccl/
https://github.com/ROCmSoftwarePlatform/rccl/blob/develop/LICENSE.txt
https://github.com/RadeonOpenCompute/rdc/
https://github.com/RadeonOpenCompute/rdc/blob/master/LICENSE
https://github.com/ROCmSoftwarePlatform/rocALUTION/
https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocBLAS/
https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocFFT/
https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocPRIM/
https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/rocRAND/
https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/rocSOLVER/
https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocSPARSE/
https://github.com/ROCmSoftwarePlatform/rocSPARSE/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocThrust/
https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/LICENSE
https://github.com/ROCmSoftwarePlatform/rocWMMA/
https://github.com/ROCmSoftwarePlatform/rocWMMA/blob/develop/LICENSE.md
https://github.com/RadeonOpenCompute/rocm-cmake/
https://github.com/RadeonOpenCompute/rocm-cmake/blob/develop/LICENSE
https://github.com/RadeonOpenCompute/rocm_bandwidth_test/
https://github.com/RadeonOpenCompute/rocm_bandwidth_test/blob/master/LICENSE.txt
https://github.com/RadeonOpenCompute/rocm_smi_lib/
https://github.com/RadeonOpenCompute/rocm_smi_lib/blob/master/License.txt
https://github.com/RadeonOpenCompute/rocminfo/
https://github.com/RadeonOpenCompute/rocminfo/blob/master/License.txt
https://github.com/ROCm-Developer-Tools/rocprofiler/
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/LICENSE
https://github.com/ROCm-Developer-Tools/rocr_debug_agent/
https://github.com/ROCm-Developer-Tools/rocr_debug_agent/blob/master/LICENSE.txt
https://github.com/ROCm-Developer-Tools/roctracer/
https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/LICENSE
https://www.amd.com/en/support/amd-software-eula

ROCm Documentation, Release 5.7.1

Inc. Other product names used in this publication are for identification purposes only and may be trademarks
of their respective companies.

13.1 Package Licensing

Attention: AQL Profiler and AOCC CPU optimization are both provided in binary form, each subject
to the license agreement enclosed in the directory for the binary and is available here: /opt/rocm/share/
doc/rocm-llvin-alt/EULA. By using, installing, copying or distributing AQL Profiler and /or AOCC CPU
Optimizations, you agree to the terms and conditions of this license agreement. If you do not agree
to the terms of this agreement, do not install, copy or use the AQL Profiler and/or the AOCC CPU
Optimizations.

For the rest of the ROCm packages, you can find the licensing information at the following location: /opt/
rocm/share/doc/<component-name>/

For example, you can fetch the licensing information of the _amd_ comgr_ component (Code Object Man-
ager) from the amd_comgr folder. A file named LICENSE.txt contains the license details at: /opt/rocm-5.
4.3 /share/doc/amd__ comgr/LICENSE.txt

13.1. Package Licensing 239

ROCm Documentation, Release 5.7.1

240 Chapter 13. Licensing Terms

CHAPTER

FOURTEEN

ALL REFERENCE MATERIAL

14.1 ROCm Software Groups

HIP HIP is both AMD’s GPU programming language extension and the GPU runtime.
o HIP
e HIP Examples
o HIPIFY
Math Libraries HIP Math Libraries support the following domains:
e Linear Algebra Libraries
o Fast Fourier Transforms
e Random Numbers
C++ Primitive Libraries ROCm template libraries for C++ primitives and algorithms are as follows:
e rocPRIM
e rocThrust
« hipCUB
e hipTensor
Communication Libraries Inter and intra-node communication is supported by the following projects:
« RCCL
AT Libraries Libraries related to Al.
e MIOpen
e Composable Kernel
e MIGraphX
Computer Vision Computer vision related projects.
e MIVisionX
e rocAL
OpenMP
e OpenMP Support Guide

Compilers and Tools

241

https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://github.com/amd/rocm-examples/tree/develop/HIP-Basic
https://rocm.docs.amd.com/projects/HIPIFY/en/latest/index.html
https://rocm.docs.amd.com/projects/rocPRIM/en/latest/index.html
https://rocm.docs.amd.com/projects/rocThrust/en/latest/index.html
https://rocm.docs.amd.com/projects/hipCUB/en/latest/index.html
https://rocm.docs.amd.com/projects/hipTensor/en/latest/index.html
https://rocm.docs.amd.com/projects/rccl/en/latest/index.html
https://rocm.docs.amd.com/projects/MIOpen/en/latest/index.html
https://rocm.docs.amd.com/projects/composable_kernel/en/latest/index.html
https://rocm.docs.amd.com/projects/AMDMIGraphX/en/latest/index.html
https://rocm.docs.amd.com/projects/MIVisionX/en/latest/README.html
https://rocm.docs.amd.com/projects/rocAL/en/latest/README.html

ROCm Documentation, Release 5.7.1

« ROCmCC

e« ROCdbgapi

o ROCgdb

¢ ROCProfiler

o ROCTracer
Management Tools

« AMD SMI

e ROCm SMI

o ROCm Data Center Tool
Validation Tools

e« ROCm Validation Suite

e TransferBench
GPU Architectures

e AMD Instinct MI200

e AMD Instinct MI100

242

Chapter 14. All Reference Material

https://rocm.docs.amd.com/projects/ROCdbgapi/en/latest/index.html
https://rocm.docs.amd.com/projects/ROCgdb/en/latest/index.html
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html
https://rocm.docs.amd.com/projects/roctracer/en/latest/index.html
https://rocm.docs.amd.com/projects/amdsmi/en/latest/index.html
https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/index.html
https://rocm.docs.amd.com/projects/rdc/en/latest/index.html
https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/index.html
https://rocm.docs.amd.com/projects/TransferBench/en/latest/index.html

CHAPTER

FIFTEEN

HIP

HIP is both AMD’s GPU programming language extension and the GPU runtime. This page introduces the
HIP runtime and other HIP libraries and tools.

15.1 HIP Runtime

HIP Runtime The HIP Runtime is used to enable GPU acceleration for all HIP language based products.
e Documentation
e GitHub

e Examples

15.2 Porting tools

HIPIFY HIPIFY assists with porting applications from based on CUDA to the HIP Runtime. Supported
CUDA APIs are documented here as well.

e Documentation
e GitHub

e Changelog

243

https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/amd/rocm-examples/tree/develop/HIP-Basic
https://rocm.docs.amd.com/projects/HIPIFY/en/latest/index.html
https://rocm.docs.amd.com/projects/HIPIFY/en/latest/index.html
https://github.com/ROCm-Developer-Tools/HIPIFY/
https://github.com/ROCm-Developer-Tools/HIPIFY/blob/amd-staging/CHANGELOG.md

ROCm Documentation, Release 5.7.1

244 Chapter 15. HIP

CHAPTER

SIXTEEN

AMD provides various math domain and support libraries as part of ROCm.

16.1 rocLIB vs. hipLIB

MATH LIBRARIES

Several libraries are prefixed with either “roc” or “hip”. The rocLIB variants (such as rocRAND, rocBLAS)
are tested and optimized for AMD hardware using supported toolchains. The hipLIB variants (such as
hipRAND, hipBLAS) are compatibility layers that provide an interface akin to their cuLIB (such as cuRAND,
cuBLAS) variants while performing static dispatching of API calls to the appropriate vendor libraries as their
back-ends. Due to their static dispatch nature, support for either vendor is decided at compile-time of the
hipLIB in question. For dynamic dispatch between vendor implementations, refer to the Orochi library.

Linear Algebra Libraries

rocBLAS
hipBLAS
hipBLASLt
rocALUTION
rocWMMA
rocSOLVER
hipSOLVER
rocSPARSE
hipSPARSE
hipSPARSELt

Fast Fourier Transforms

rocFFT
hipFFT

Random Numbers

rocRAND
hipRAND

245

https://github.com/GPUOpen-LibrariesAndSDKs/Orochi
https://rocm.docs.amd.com/projects/rocBLAS/en/latest/index.html
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/index.html
https://rocm.docs.amd.com/projects/hipBLASLt/en/latest/index.html
https://rocm.docs.amd.com/projects/rocALUTION/en/latest/index.html
https://rocm.docs.amd.com/projects/rocWMMA/en/latest/index.html
https://rocm.docs.amd.com/projects/rocSOLVER/en/latest/index.html
https://rocm.docs.amd.com/projects/hipSOLVER/en/latest/index.html
https://rocm.docs.amd.com/projects/rocSPARSE/en/latest/index.html
https://rocm.docs.amd.com/projects/hipSPARSE/en/latest/index.html
https://rocm.docs.amd.com/projects/hipSPARSELt/en/latest/index.html
https://rocm.docs.amd.com/projects/rocFFT/en/latest/index.html
https://rocm.docs.amd.com/projects/hipFFT/en/latest/index.html
https://rocm.docs.amd.com/projects/rocRAND/en/latest/index.html
https://rocm.docs.amd.com/projects/hipRAND/en/latest/index.html

ROCm Documentation, Release 5.7.1

16.2 Linear Algebra Libraries

ROCm libraries for linear algebra are as follows:
rocBLAS rocBLAS is an AMD GPU optimized library for BLAS (Basic Linear Algebra Subprograms).
e Documentation
e GitHub
e Changelog
e Examples

hipBLAS hipBLAS is a compatibility layer for GPU accelerated BLAS optimized for AMD GPUs via
rocBLAS and rocSOLVER. hipBLAS allows for a common interface for other GPU BLAS libraries.

e Documentation
e GitHub
e Changelog

hipBLASLt hipBLASLt is a library that provides general matrix-matrix operations with a flexible API and
extends functionalities beyond traditional BLAS library. hipBLASLt is exposed APIs in HIP programming
language with an underlying optimized generator as a back-end kernel provider.

¢ Documentation
e GitHub
e Changelog

rocALUTION rocALUTION is a sparse linear algebra library with focus on exploring fine-grained paral-
lelism on top of AMD’s ROCm runtime and toolchains, targeting modern CPU and GPU platforms.

e Documentation
e GitHub
e Changelog

rocWMMA rocWMMA provides an API to break down mixed precision matrix multiply-accumulate (MMA)
problems into fragments and distributes these over GPU wavefronts.

e Documentation
o GitHub
e Changelog

rocSOLVER rocSOLVER provides a subset of LAPACK (Linear Algebra Package) functionality on the
ROCm platform.

e Documentation
e GitHub
e Changelog

hipSOLVER, hipSOLVER is a LAPACK marshalling library supporting both rocSOLVER and cuSOLVER
as backends whilst exporting a unified interface.

e Documentation
e GitHub

e Changelog

246 Chapter 16. Math Libraries

https://rocm.docs.amd.com/projects/rocBLAS/en/latest/index.html
https://rocm.docs.amd.com/projects/rocBLAS/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocBLAS
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/index.html
https://rocm.docs.amd.com/projects/hipBLAS/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipBLASLt/en/latest/index.html
https://rocm.docs.amd.com/projects/hipBLASLt/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipBLASLt
https://github.com/ROCmSoftwarePlatform/hipBLASLt/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocALUTION/en/latest/index.html
https://rocm.docs.amd.com/projects/rocALUTION/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocWMMA/en/latest/index.html
https://rocm.docs.amd.com/projects/rocWMMA/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocWMMA
https://github.com/ROCmSoftwarePlatform/rocWMMA/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocSOLVER/en/latest/index.html
https://rocm.docs.amd.com/projects/rocSOLVER/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocSOLVER
https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipSOLVER/en/latest/index.html
https://rocm.docs.amd.com/projects/hipSOLVER/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipSOLVER
https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/CHANGELOG.md

ROCm Documentation, Release 5.7.1

rocSPARSE rocSPARSE is a library to provide BLAS for sparse computations.
e Documentation
e GitHub
e Changelog

hipSPARSE hipSPARSE is a marshalling library to provide sparse BLAS functionality, supporting both
rocSPARSE and cuSPARSE as backends.

¢ Documentation
e GitHub
e Changelog

hipSPARSELt hipSPARSE is a marshalling library to provide sparse BLAS functionality, supporting both
rocSPARSELt and cuSPARSELt as backends.

e Documentation

e GitHub

16.3 Fast Fourier Transforms

ROCm libraries for FFT are as follows:

rocFFT rocFFT is an AMD GPU optimized library for FFT.
e Documentation
o GitHub
e Changelog

hipFFT hipFFT is a compatibility layer for GPU accelerated FFT optimized for AMD GPUs using rocFFT.
hipFFT allows for a common interface for other non AMD GPU FFT libraries.

¢ Documentation
e GitHub

e Changelog

16.4 Random Numbers

rocRAND rocRAND is an AMD GPU optimized library for pseudo-random number generators (PRNG).
e Documentation
e GitHub
o Changelog
e Examples

hipRAND hipRAND is a compatibility layer for GPU accelerated pseudo-random number generation
(PRNG) optimized for AMD GPUs using rocRAND. hipRAND allows for a common interface for other non
AMD GPU PRNG libraries.

e Documentation

16.3. Fast Fourier Transforms 247

https://rocm.docs.amd.com/projects/rocSPARSE/en/latest/index.html
https://rocm.docs.amd.com/projects/rocSPARSE/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocSPARSE
https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipSPARSE/en/latest/index.html
https://rocm.docs.amd.com/projects/hipSPARSE/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipSPARSELt/en/latest/index.html
https://rocm.docs.amd.com/projects/hipSPARSELt/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipSPARSELt
https://rocm.docs.amd.com/projects/rocFFT/en/latest/index.html
https://rocm.docs.amd.com/projects/rocFFT/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipFFT/en/latest/index.html
https://rocm.docs.amd.com/projects/hipFFT/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipFFT
https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocRAND/en/latest/index.html
https://rocm.docs.amd.com/projects/rocRAND/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocRAND/
https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocRAND
https://rocm.docs.amd.com/projects/hipRAND/en/latest/index.html
https://rocm.docs.amd.com/projects/hipRAND/en/latest/index.html

ROCm Documentation, Release 5.7.1

e GitHub

o Changelog

248 Chapter 16. Math Libraries

https://github.com/ROCmSoftwarePlatform/hipRAND/
https://github.com/ROCmSoftwarePlatform/hipRAND/blob/develop/CHANGELOG.md

CHAPTER

SEVENTEEN

C++ PRIMITIVE LIBRARIES

ROCm template libraries for algorithms are as follows:

rocPRIM rocPRIM is an AMD GPU optimized template library of algorithm primitives, like transforms,
reductions, scans, etc. It also serves as a common back-end for similar libraries found inside ROCm.

¢ Documentation
e GitHub

e Changelog

e Examples

rocThrust rocThrust is a template library of algorithm primitives with a Thrust-compatible interface. Their
CPU back-ends are identical, while the GPU back-end calls into rocPRIM.

e Documentation
e GitHub

e Changelog

e Examples

hipCUB hipCUB is a template library of algorithm primitives with a CUB-compatible interface. It’s
back-end is rocPRIM.

¢ Documentation
e GitHub

e Changelog

o Examples

hipTensor hipTensor is AMD’s C++ library for accelerating tensor primitives based on the composable
kernel library, through general purpose kernel languages, like HIP C++.

e Documentation

e GitHub

249

https://rocm.docs.amd.com/projects/rocPRIM/en/latest/index.html
https://rocm.docs.amd.com/projects/rocPRIM/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocPRIM/
https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocPRIM
https://rocm.docs.amd.com/projects/rocThrust/en/latest/index.html
https://rocm.docs.amd.com/projects/rocThrust/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rocThrust
https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocThrust
https://rocm.docs.amd.com/projects/hipCUB/en/latest/index.html
https://rocm.docs.amd.com/projects/hipCUB/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipCUB
https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/hipCUB
https://rocm.docs.amd.com/projects/hipTensor/en/latest/index.html
https://rocm.docs.amd.com/projects/hipTensor/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/hipTensor

ROCm Documentation, Release 5.7.1

250 Chapter 17. C++ Primitive Libraries

CHAPTER

EIGHTEEN

COMMUNICATION LIBRARIES

RCCL RCCL (pronounced “Rickle”) is a stand-alone library of standard collective communication routines
for GPUs, implementing all-reduce, all-gather, reduce, broadcast, reduce-scatter, gather, scatter, and all-to-
all. The collective operations are implemented using ring and tree algorithms and have been optimized for
throughput and latency.

e Documentation
e GitHub
e Changelog

o Examples

251

https://rocm.docs.amd.com/projects/rccl/en/latest/index.html
https://rocm.docs.amd.com/projects/rccl/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/CHANGELOG.md
https://github.com/ROCmSoftwarePlatform/rccl/tree/develop/tools

ROCm Documentation, Release 5.7.1

252 Chapter 18. Communication Libraries

CHAPTER

NINETEEN

AT LIBRARIES

MIOpen AMD’s library for high performance machine learning primitives.
e Documentation
e GitHub
e Changelog

Composable Kernel Composable Kernel: Performance Portable Programming Model for Machine Learning
Tensor Operators

¢ Documentation
e GitHub
o Changelog

MIGraphX AMD MIGraphX is AMD’s graph inference engine that accelerates machine learning model
inference.

e Documentation
e GitHub

e Changelog

253

https://rocm.docs.amd.com/projects/MIOpen/en/latest/index.html
https://rocm.docs.amd.com/projects/MIOpen/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/MIOpen/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/composable_kernel/en/latest/index.html
https://rocm.docs.amd.com/projects/composable_kernel/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/composable_kernel
https://github.com/ROCmSoftwarePlatform/composable_kernel/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/AMDMIGraphX/en/latest/index.html
https://rocm.docs.amd.com/projects/AMDMIGraphX/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/blob/develop/CHANGELOG.md

ROCm Documentation, Release 5.7.1

254 Chapter 19. AI Libraries

CHAPTER

TWENTY

COMPUTER VISION

MIVisionX MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries,
utilities, and applications bundled into a single toolkit. AMD MIVisionX also delivers a highly optimized
open-source implementation of the Khronos OpenVX™ and OpenVX™ Extensions.

e Documentation
e GitHub
e Changelog

rocAL The AMD ROCm Augmentation Library (rocAL) is designed to efficiently decode and process images
and videos from a variety of storage formats and modify them through a processing graph programmable by
the user. rocAL currently provides C APIL

¢ Documentation

255

https://rocm.docs.amd.com/projects/MIVisionX/en/latest/README.html
https://rocm.docs.amd.com/projects/MIVisionX/en/latest/README.html
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/master/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocAL/en/latest/README.html
https://rocm.docs.amd.com/projects/rocAL/en/latest/README.html

ROCm Documentation, Release 5.7.1

256 Chapter 20. Computer Vision

CHAPTER

TWENTYONE

OPENMP SUPPORT IN ROCM

21.1 Introduction

The ROCm™ installation includes an LLVM-based implementation that fully supports the OpenMP 4.5
standard and a subset of OpenMP 5.0, 5.1, and 5.2 standards. Fortran, C/C++ compilers, and corresponding
runtime libraries are included. Along with host APIs, the OpenMP compilers support offloading code and
data onto GPU devices. This document briefly describes the installation location of the OpenMP toolchain,
example usage of device offloading, and usage of rocprof with OpenMP applications. The GPUs supported
are the same as those supported by this ROCm release. See the list of supported GPUs in GPU Support
and OS Compatibility (Linux).

The ROCm OpenMP compiler is implemented using LLVM compiler technology. openmp-toolchain illus-
trates the internal steps taken to translate a user’s application into an executable that can offload computa-
tion to the AMDGPU. The compilation is a two-pass process. Pass 1 compiles the application to generate
the CPU code and Pass 2 links the CPU code to the AMDGPU device code.

'[OpenMP Toolchain](.../.../data/reference/openmp/openmp__toolchain.svg “OpenMP toolchain” =800x600)

21.1.1 Installation
The OpenMP toolchain is automatically installed as part of the standard ROCm installation and is available
under /opt/rocm-{version}/llvm. The sub-directories are:
bin: Compilers (flang and clang) and other binaries.
o examples: The usage section below shows how to compile and run these programs.
e include: Header files.
e lib: Libraries including those required for target offload.

e lib-debug: Debug versions of the above libraries.

21.2 OpenMP: Usage

The example programs can be compiled and run by pointing the environment variable ROCM__PATH to the
ROCm install directory.

Example:

export ROCM_PATH=/opt/rocm-{version}
cd SROCM PATH /share/openmp-extras/examples/openmp/veccopy
sudo make run

257

ROCm Documentation, Release 5.7.1

Note: sudo is required since we are building inside the /opt directory. Alternatively, copy the files to your
home directory first.

The above invocation of Make compiles and runs the program. Note the options that are required for target
offload from an OpenMP program:

-fopenmp --offload-arch=<gpu-arch>

Note: The compiler also accepts the alternative offloading notation:

-fopenmp -fopenmp-targets—amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=<gpu-arch>

Obtain the value of gpu-arch by running the following command:

% /opt/rocm-{version}/bin/rocminfo | grep gfx

See the complete list of compiler command-line references here.

21.2.1 Using rocprof with OpenMP

The following steps describe a typical workflow for using rocprof with OpenMP code compiled with AOMP:

1. Run rocprof with the program command line:

% rocprof <application> <args>

This produces a results.csv file in the user’s current directory that shows basic stats such as kernel
names, grid size, number of registers used, etc. The user can choose to specify the preferred output
file name using the o option.

2. Add options for a detailed result:

--stats: % rocprof --stats <application> <args>

The stats option produces timestamps for the kernels. Look into the output CSV file for the field,
DurationNs, which is useful in getting an understanding of the critical kernels in the code.

Apart from --stats, the option --timestamp on produces a timestamp for the kernels.

3. After learning about the required kernels, the user can take a detailed look at each one of them. rocprof
has support for hardware counters: a set of basic and a set of derived ones. See the complete list of
counters using options —list-basic and —list-derived. rocprof accepts either a text or an XML file as an
input.

For more details on rocprof, refer to the ROCProfilerV1 User Manual.

258 Chapter 21. OpenMP Support in ROCm

https://github.com/RadeonOpenCompute/llvm-project/blob/amd-stg-open/clang/docs/CommandGuide/clang.rst
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprofv1.html

ROCm Documentation, Release 5.7.1

21.2.2 Using Tracing Options

Prerequisite: When using the --sys-trace option, compile the OpenMP program with:

-W1,-rpath,/opt/rocm-{version}/lib -lamdhip64

The following tracing options are widely used to generate useful information:

e --hsa-trace: This option is used to get a JSON output file with the HSA API execution traces and a
flat profile in a CSV file.

e --sys-trace: This allows programmers to trace both HIP and HSA calls. Since this option results in
loading libamdhip64.so, follow the prerequisite as mentioned above.

A CSV and a JSON file are produced by the above trace options. The CSV file presents the data in a
tabular format, and the JSON file can be visualized using Google Chrome at chrome://tracing/ or Perfetto.
Navigate to Chrome or Perfetto and load the JSON file to see the timeline of the HSA calls.

For more details on tracing, refer to the ROCProfilerV1 User Manual.

21.2.3 Environment Variables

Environment Purpose
Variable
OMP_NUM_ TEANMSset the number of teams for kernel launch, which is otherwise chosen by the im-
plementation by default. You can set this number (subject to implementation limits)
for performance tuning.

LIBOMPTAR- To print useful statistics for device operations. Setting it to 1 and running the program
GET_KERNEL_|TRA{SEhe name of every kernel launched, the number of teams and threads used, and
the corresponding register usage. Setting it to 2 additionally emits timing information
for kernel launches and data transfer operations between the host and the device.
LIBOMPTAR- To print informational messages from the device runtime as the program executes.
GET_INFO Setting it to a value of 1 or higher, prints fine-grain information and setting it to -1
prints complete information.

LIBOMPTAR- To get detailed debugging information about data transfer operations and kernel
GET_DEBUG launch when using a debug version of the device library. Set this environment variable
to 1 to get the detailed information from the library.

GPU_MAX_ HW_TUdstUHESE number of HSA queues in the OpenMP runtime. The HSA queues are
created on demand up to the maximum value as supplied here. The queue creation
starts with a single initialized queue to avoid unnecessary allocation of resources. The
provided value is capped if it exceeds the recommended, device-specific value.
LIBOMPTAR- To set the threshold size up to which data transfers are initiated asynchronously. The
GET_AMDGPU | NefaXlt ABMNGIIGRPY 1IBY2EER4 bytes (1MB).

OMPX_FORCE._| SEoNGircdRthétmi¥Bne to execute all operations synchronously, i.e., wait for an operation
to complete immediately. This affects data transfers and kernel execution. While it is
mainly designed for debugging, it may have a minor positive effect on performance in
certain situations.

21.2. OpenMP: Usage 259

https://perfetto.dev/
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprofv1.html

ROCm Documentation, Release 5.7.1

21.3 OpenMP: Features

The OpenMP programming model is greatly enhanced with the following new features implemented in the
past releases.

21.3.1 Asynchronous Behavior in OpenMP Target Regions

e Controlling Asynchronous Behavior

The OpenMP offloading runtime executes in an asynchronous fashion by default, allowing multiple data
transfers to start concurrently. However, if the data to be transferred becomes larger than the default
threshold of 1MB, the runtime falls back to a synchronous data transfer. The buffers that have been locked
already are always executed asynchronously. You can overrule this default behavior by setting LIBOMP-
TARGET AMDGPU_MAX ASYNC_COPY_BYTES and OMPX FORCE_SYNC_REGIONS. See the
Environment Variables table for details.

e Multithreaded Offloading on the Same Device

The libomptarget plugin for GPU offloading allows creation of separate configurable HSA queues per chiplet,
which enables two or more threads to concurrently offload to the same device.

o Parallel Memory Copy Invocations

Implicit asynchronous execution of single target region enables parallel memory copy invocations.

21.3.2 Unified Shared Memory

Unified Shared Memory (USM) provides a pointer-based approach to memory management. To implement
USM, fulfill the following system requirements along with Xnack capability.

21.3.2.1 Prerequisites

e Linux Kernel versions above 5.14
e Latest KFD driver packaged in ROCm stack
e Xnack, as USM support can only be tested with applications compiled with Xnack capability

21.3.2.2 Xnack Capability
When enabled, Xnack capability allows GPU threads to access CPU (system) memory, allocated with OS-

allocators, such as malloc, new, and mmap. Xnack must be enabled both at compile- and run-time. To
enable Xnack support at compile-time, use:

--offload-arch=gfx908:xnack+

Or use another functionally equivalent option Xnack-any:

--offload-arch=gfx908

To enable Xnack functionality at runtime on a per-application basis, use environment variable:

HSA_ XNACK=1

When Xnack support is not needed:

260 Chapter 21. OpenMP Support in ROCm

ROCm Documentation, Release 5.7.1

e Build the applications to maximize resource utilization using:

--offload-arch=gfx908:xnack-

e At runtime, set the HSA_XNACK environment variable to 0.

21.3.2.3 Unified Shared Memory Pragma

This OpenMP pragma is available on MI200 through xnack+ support.

omp requires unified_ shared__memory

As stated in the OpenMP specifications, this pragma makes the map clause on target constructs optional.
By default, on MI200, all memory allocated on the host is fine grain. Using the map clause on a target
clause is allowed, which transforms the access semantics of the associated memory to coarse grain.

A simple program demonstrating the use of this feature is:
$ cat parallel_for.cpp

#include <stdlib.h>

#include <stdio.h>

#define N 64
#pragma omp requires unified_shared _memory
int main() {

int n = Nj

int *a = new int[n};

int *b = new int[n];

for(int i = 0;1 < n; i++)
bli] = i;

#pragma omp target parallel for map(to:b[:n])
for(int i = 0; i < n; i++)
ali] = blif;

for(int i = 0; i < n; i++)
if(ali] 1= i)
printf(”error at %d: expected %d, got %d\n”, i, i4+1, al[i]);

return 0;

}

$ clang++ -O2 -target x86_ 64-pc-linux-gnu -fopenmp --offload-arch=gfx90a:xnack+ parallel_for.cpp
$ HSA XNACK=1 ./a.out

In the above code example, pointer “a” is not mapped in the target region, while pointer “b” is. Both are
valid pointers on the GPU device and passed by-value to the kernel implementing the target region. This
means the pointer values on the host and the device are the same.

The difference between the memory pages pointed to by these two variables is that the pages pointed by “a”
are in fine-grain memory, while the pages pointed to by “b” are in coarse-grain memory during and after the
execution of the target region. This is accomplished in the OpenMP runtime library with calls to the ROCr
runtime to set the pages pointed by “b” as coarse grain.

21.3. OpenMP: Features 261

ROCm Documentation, Release 5.7.1

21.3.3 OMPT Target Support

The OpenMP runtime in ROCm implements a subset of the OMPT device APIs, as described in the OpenMP
specification document. These APIs allow first-party tools to examine the profile and kernel traces that
execute on a device. A tool can register callbacks for data transfer and kernel dispatch entry points or use
APIs to start and stop tracing for device-related activities such as data transfer and kernel dispatch timings
and associated metadata. If device tracing is enabled, trace records for device activities are collected during
program execution and returned to the tool using the APIs described in the specification.

The following example demonstrates how a tool uses the supported OMPT target APIs. The README in
/opt/rocm/llvin/examples/tools/ompt outlines the steps to be followed, and the provided example can be
run as shown below:

cd SROCM _PATH /share/openmp-extras/examples/tools/ompt/veccopy-ompt-target-tracing
sudo make run

The file veccopy-ompt-target-tracing.c simulates how a tool initiates device activity tracing. The file
callbacks.h shows the callbacks registered and implemented by the tool.

21.3.4 Floating Point Atomic Operations

The MI200-series GPUs support the generation of hardware floating-point atomics using the OpenMP atomic
pragma. The support includes single- and double-precision floating-point atomic operations. The program-
mer must ensure that the memory subjected to the atomic operation is in coarse-grain memory by mapping
it explicitly with the help of map clauses when not implicitly mapped by the compiler as per the OpenMP
specifications. This makes these hardware floating-point atomic instructions “fast,” as they are faster than
using a default compare-and-swap loop scheme, but at the same time “unsafe,” as they are not supported
on fine-grain memory. The operation in unified shared memory mode also requires programmers to map
the memory explicitly when not implicitly mapped by the compiler.

To request fast floating-point atomic instructions at the file level, use compiler flag -munsafe-fp-atomics or
a hint clause on a specific pragma:

double a = 0.0;
#pragma omp atomic hint(AMD_ fast_fp_atomics)
a=a+ 1.0;

Note: AMD_ unsafe fp atomics is an alias for AMD_ fast fp atomics, and AMD_safe fp atomics is
implemented with a compare-and-swap loop.

To disable the generation of fast floating-point atomic instructions at the file level, build using the option
-msafe-fp-atomics or use a hint clause on a specific pragma:

double a = 0.0;
#pragma omp atomic hint(AMD _safe fp atomics)
a=a+ 1.0;

The hint clause value always has a precedence over the compiler flag, which allows programmers to create
atomic constructs with a different behavior than the rest of the file.

See the example below, where the user builds the program using -msafe-fp-atomics to select a file-wide “safe
atomic” compilation. However, the fast atomics hint clause over variable “a” takes precedence and operates

on “a” using a fast/unsafe floating-point atomic, while the variable “b” in the absence of a hint clause is
operated upon using safe floating-point atomics as per the compiler flag.

262 Chapter 21. OpenMP Support in ROCm

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

ROCm Documentation, Release 5.7.1

double a = 0.0;.
#pragma omp atomic hint(AMD_ fast_fp atomics)
a=a+ 1.0;

double b = 0.0;
#pragma omp atomic

b =b + 1.0;

21.3.5 Address Sanitizer (ASan) Tool

Address Sanitizer is a memory error detector tool utilized by applications to detect various errors ranging
from spatial issues such as out-of-bound access to temporal issues such as use-after-free. The AOMP compiler
supports ASan for AMD GPUs with applications written in both HIP and OpenMP.

Features Supported on Host Platform (Target x86_64):
o Use-after-free
o Buffer overflows
o Heap buffer overflow
o Stack buffer overflow
o Global buffer overflow
o Use-after-return
e Use-after-scope
e Initialization order bugs
Features Supported on AMDGPU Platform (amdgen-amd-amdhsa):
o Heap buffer overflow
o Global buffer overflow

Software (Kernel/OS) Requirements: Unified Shared Memory support with Xnack capability. See the section
on Unified Shared Memory for prerequisites and details on Xnack.

Example:

e Heap buffer overflow

void main() {

....... // Some program statements

....... // Some program statements

#pragma omp target map(to : A[0:N], B[0:N]) map(from: C[0:N])

{

#pragma omp parallel for
for(int i =0 ; i < Nj i++){
Cli+10] = Ali] + BJi];

}// end of for loop

....... // Some program statements
}// end of main

See the complete sample code for heap buffer overflow here.

¢ Global buffer overflow

21.3. OpenMP: Features 263

https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/examples/tools/asan/heap_buffer_overflow/openmp/vecadd-HBO.cpp

ROCm Documentation, Release 5.7.1

#pragma omp declare target
int A[N]|,B[N]|,C[N]J;
#pragma omp end declare target
void main(){
...... // some program statements
...... // some program statements
#pragma omp target data map(to:A[0:N],B[0:N]) map(from: C[0:N])
{
#pragma omp target update to(A,B)
#pragma omp target parallel for
for(int i=0; i<N; i++){
Cli|=Al[i*100]+B[i+22];
} // end of for loop

#pragma omp target update from(C)

........ // some program statements
} // end of main

See the complete sample code for global buffer overflow here.

21.3.6 Clang Compiler Option for Kernel Optimization
You can use the clang compiler option -fopenmp-target-fast for kernel optimization if certain constraints
implied by its component options are satisfied. -fopenmp-target-fast enables the following options:

o -fopenmp-target-ignore-env-vars: It enables code generation of specialized kernels including No-loop
and Cross-team reductions.

o -fopenmp-assume-no-thread-state: It enables the compiler to assume that no thread in a parallel re-
gion modifies an Internal Control Variable (ICV), thus potentially reducing the device runtime code
execution.

o -fopenmp-assume-no-nested-parallelism: It enables the compiler to assume that no thread in a parallel
region encounters a parallel region, thus potentially reducing the device runtime code execution.

e -03 if no -O* is specified by the user.

21.3.7 Specialized Kernels

Clang will attempt to generate specialized kernels based on compiler options and OpenMP constructs. The
following specialized kernels are supported:

e No-Loop
e Big-Jump-Loop
o Cross-Team (Xteam) Reductions
To enable the generation of specialized kernels, follow these guidelines:

e Do not specify teams, threads, and schedule-related environment variables. The num_ teams clause in
an OpenMP target construct acts as an override and prevents the generation of the No-Loop kernel.
If the specification of num_ teams clause is a user requirement then clang tries to generate the Big-
Jump-Loop kernel instead of the No-Loop kernel.

o Assert the absence of the teams, threads, and schedule-related environment variables by adding the
command-line option -fopenmp-target-ignore-env-vars.

264 Chapter 21. OpenMP Support in ROCm

https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/examples/tools/asan/global_buffer_overflow/openmp/vecadd-GBO.cpp

ROCm Documentation, Release 5.7.1

e To automatically enable the specialized kernel generation, use -Ofast or -fopenmp-target-fast for com-
pilation.

o To disable specialized kernel generation, use -fno-openmp-target-ignore-env-vars.

21.3.7.1 No-Loop Kernel Generation

The No-loop kernel generation feature optimizes the compiler performance by generating a specialized kernel
for certain OpenMP target constructs such as target teams distribute parallel for. The specialized kernel
generation feature assumes every thread executes a single iteration of the user loop, which leads the runtime
to launch a total number of GPU threads equal to or greater than the iteration space size of the target region
loop. This allows the compiler to generate code for the loop body without an enclosing loop, resulting in
reduced control-flow complexity and potentially better performance.

21.3.7.2 Big-Jump-Loop Kernel Generation

A No-Loop kernel is not generated if the OpenMP teams construct uses a num__teams clause. Instead, the
compiler attempts to generate a different specialized kernel called the Big-Jump-Loop kernel. The compiler
launches the kernel with a grid size determined by the number of teams specified by the OpenMP num__teams
clause and the blocksize chosen either by the compiler or specified by the corresponding OpenMP clause.

21.3.7.3 Xteam Optimized Reduction Kernel Generation

If the OpenMP construct has a reduction clause, the compiler attempts to generate optimized code by
utilizing efficient Xteam communication. New APIs for Xteam reduction are implemented in the device
runtime and are automatically generated by clang.

21.3. OpenMP: Features 265

ROCm Documentation, Release 5.7.1

266 Chapter 21. OpenMP Support in ROCm

CHAPTER

TWENTYTWO

COMPILERS AND TOOLS

ROCdbgapi The AMD Debugger API is a library that provides all the support necessary for a debugger
and other tools to perform low level control of the execution and inspection of execution state of AMD’s
commercially available GPU architectures.

e Documentation
e GitHub

ROCmCC ROCmCC is a Clang/LLVM-based compiler. It is optimized for high-performance computing
on AMD GPUs and CPUs and supports various heterogeneous programming models such as HIP, OpenMP,
and OpenCL.

e Documentation

ROCgdb This is ROCgdb, the ROCm source-level debugger for Linux, based on GDB, the GNU source-level
debugger.

e Documentation
e GitHub

ROCProfiler ROC profiler library. Profiling with performance counters and derived metrics. Library
supports GFX8/GFX9. Hardware specific low-level performance analysis interface for profiling of GPU
compute applications. The profiling includes hardware performance counters with complex performance
metrics.

e Documentation
o GitHub

ROCTracer Callback/Activity Library for Performance tracing AMD GPUs
e Documentation

e GitHub

22.1 See Also

e Compiler Disambiguation

267

https://rocm.docs.amd.com/projects/ROCdbgapi/en/latest/index.html
https://rocm.docs.amd.com/projects/ROCdbgapi/en/latest/index.html
https://github.com/ROCm-Developer-Tools/ROCdbgapi/
https://rocm.docs.amd.com/projects/ROCgdb/en/latest/index.html
https://rocm.docs.amd.com/projects/ROCgdb/en/latest/index.html
https://github.com/ROCm-Developer-Tools/ROCgdb/
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/rocprof.html
https://github.com/ROCm-Developer-Tools/rocprofiler/
https://rocm.docs.amd.com/projects/roctracer/en/latest/index.html
https://rocm.docs.amd.com/projects/roctracer/en/latest/index.html
https://github.com/ROCm-Developer-Tools/roctracer

ROCm Documentation, Release 5.7.1

22.2 Compiler Reference Guide

22.2.1 Introduction to Compiler Reference Guide

ROCmCC is a Clang/LLVM-based compiler. It is optimized for high-performance computing on AMD GPUs
and CPUs and supports various heterogeneous programming models such as HIP, OpenMP, and OpenCL.

ROCmCC is made available via two packages: rocm-llvm and rocm-llvm-alt. The differences are listed in
the table below.

Table 22.1: Differences between rocm-llvim and rocm-llvm-alt

rocm-llvm rocm-llvm-alt
Installed by default when | An optional package
ROCmM™ itself is installed
Provides an open-source com- | Provides an additional closed-source compiler for users interested in ad-
piler ditional CPU optimizations not available in rocm-llvim

For more details, see:
e« AMD GPU usage: llvm.org/docs/AMDGPUUsage.html

e Releases and source: https://github.com/RadeonOpenCompute/llvim-project

22.2.1.1 ROCm Compiler Interfaces

ROCm currently provides two compiler interfaces for compiling HIP programs:

o /opt/rocm/bin/hipce

e /opt/rocm/bin/amdclang++
Both leverage the same LLVM compiler technology with the AMD GCN GPU support; however, they offer
a slightly different user experience. The hipcc command-line interface aims to provide a more familiar
user interface to users who are experienced in CUDA but relatively new to the ROCm/HIP development
environment. On the other hand, amdclang++ provides a user interface identical to the clang++ compiler.

It is more suitable for experienced developers who want to directly interact with the clang compiler and gain
full control of their application’s build process.

The major differences between hipcc and amdclang++ are listed below:

268 Chapter 22. Compilers and Tools

https://llvm.org/docs/AMDGPUUsage.html
https://github.com/RadeonOpenCompute/llvm-project

ROCm Documentation, Release 5.7.1

Table 22.2: Differences between hipcc and amdclang++

* hipcc amdclang++

Com- | Treats all source files as HIP lan- | Enables the HIP language support for files with the .hip

piling | guage source files extension or through the -x hip compiler option

HIP

source

files

De- Auto-detects the GPUs available | Has AMD GCN gfx803 as the default GPU architecture.

tect- | on the system and generates code | The --offload-arch compiler option may be used to target

ing for those devices when no GPU ar- | other GPU architectures

GPU | chitecture is specified

archi-

tec-

ture

Find- | Finds the HIP installation based | First looks for HIP under the same parent directory as its

ing a | on its own location and its knowl- | own LLVM directory and then falls back on /opt/rocm.

HIP edge about the ROCm directory | Users can use the --rocm-path option to instruct the com-

in- structure piler to use HIP from the specified ROCm installation.

stal-

la-

tion

Link- | Is configured to automatically link | Requires the --hip-link flag to be specified to link to the

ing to the HIP runtime from the de- | HIP runtime. Alternatively, users can use the -1<dir>

to tected HIP installation -lamdhip64 option to link to a HIP runtime library.

the

HIP

run-

time

li-

brary

De- Inlines all GPU device functions, | Relies on inlining heuristics to control inlining. Users ex-

vice which provide greater perfor- | periencing performance or compilation issues with code

func- | mance and compatibility for codes | using file scoped or device function scoped _ shared

tion that contain file scoped or de- | variables could try -mllvm -amdgpu-early-inline-all=true

inlin- | vice function scoped __ shared_ | -mllvi -amdgpu-function-calls=false to work around the is-

ing variables. However, it may in- | sue. There are plans to address these issues with future
crease compile time. compiler improvements.

Source| https://github.com/ https://github.com/RadeonOpenCompute/llvm-project

code | ROCm-Developer-Tools/HIPCC

loca-

tion

22.2. Compiler Reference Guide

269

https://github.com/ROCm-Developer-Tools/HIPCC
https://github.com/ROCm-Developer-Tools/HIPCC
https://github.com/RadeonOpenCompute/llvm-project

ROCm Documentation, Release 5.7.1

22.2.2 Compiler Options and Features

This chapter discusses compiler options and features.

22.2.2.1 AMD GPU Compilation

This section outlines commonly used compiler flags for hipcc and amdclang++.
-x hip
Compiles the source file as a HIP program.
-fopenmp
Enables the OpenMP support.
-fopenmp-targets=<gpu>
Enables the OpenMP target offload support of the specified GPU architecture.
Gpu
The GPU architecture. E.g. gfx908.
--gpu-max-threads-per-block=<value>:
Sets the default limit of threads per block. Also referred to as the launch bounds.
Value
The default maximum amount of threads per block.
-munsafe-fp-atomics

Enables unsafe floating point atomic instructions (AMDGPU only).
-ffast-math
Allows aggressive, lossy floating-point optimizations.

-mwavefrontsize64, -mno-wavefrontsize64
Sets wavefront size to be 64 or 32 on RDNA architectures.

-mcumode
Switches between CU and WGP modes on RDNA architectures.

--offload-arch=<gpu>
HIP offloading target ID. May be specified more than once.
Gpu
The a device architecture followed by target ID features delimited by a colon. Each

target ID feature is a predefined string followed by a plus or minus sign (e.g.
gfx908:xnack+:sramecc-).

g
Generates source-level debug information.

-fgpu-rdc, -fno-gpu-rdc

Generates relocatable device code, also known as separate compilation mode.

270 Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

22.2.2.2 AMD Optimizations for Zen Architectures

The CPU compiler optimizations described in this chapter originate from the AMD Optimizing C/C++
Compiler (AOCC) compiler. They are available in ROCmCC if the optional rocm-llvim-alt package is in-
stalled. The user’s interaction with the compiler does not change once rocm-llvm-alt is installed. The user
should use the same compiler entry point, provided AMD provides high-performance compiler optimizations
for Zen-based processors in AOCC.

For more information, refer to https://www.amd.com/en/developer/aocc.html.

22.2.2.2.1 -famd-opt

Enables a default set of AMD proprietary optimizations for the AMD Zen CPU architectures.
-fno-amd-opt disables the AMD proprietary optimizations.

The -famd-opt flag is useful when a user wants to build with the proprietary optimization compiler and not
have to depend on setting any of the other proprietary optimization flags.

Note: -famd-opt can be used in addition to the other proprietary CPU optimization flags. The table
of optimizations below implicitly enables the invocation of the AMD proprietary optimizations compiler,
whereas the -famd-opt flag requires this to be handled explicitly.

22.2.2.2.2 -fstruct-layout=[1,2,3,4,5,6,7]

Analyzes the whole program to determine if the structures in the code can be peeled and the pointer or
integer fields in the structure can be compressed. If feasible, this optimization transforms the code to enable
these improvements. This transformation is likely to improve cache utilization and memory bandwidth. It
is expected to improve the scalability of programs executed on multiple cores.

This is effective only under -flto, as the whole program analysis is required to perform this optimization. Users
can choose different levels of aggressiveness with which this optimization can be applied to the application,
with 1 being the least aggressive and 7 being the most aggressive level.

22.2. Compiler Reference Guide 271

https://www.amd.com/en/developer/aocc.html

ROCm Documentation, Release 5.7.1

Table 22.3: -fstruct-layout Values and Their Effects

-fstrubtSkayuPointer size after | Type of structure fields eligible for compression Whether
value| ture | selective com- compression
peel-| pression of self- performed
ing | referential pointers under safety
in structures, check
wherever safe
1 En- | NA NA NA
able
2 En- | 32-bit NA NA
abled
3 En- | 16-bit NA NA
abled
4 En- | 32-bit Integer Yes
able
5 En- | 16-bit Integer Yes
abled
6 En- | 32-bit 64-bit signed int or unsigned int. Users must ensure | No. Users
abled that the values assigned to 64-bit signed int fields | must ensure
are in range -(2731 - 1) to +(2731 - 1) and 64-bit | the safety
unsigned int fields are in the range 0 to +(2731 - 1). | based on
Otherwise, you may obtain incorrect results. the program
compiled.
7 En- | 16-bit 64-bit signed int or unsigned int. Users must ensure | No. Users
able that the values assigned to 64-bit signed int fields | must ensure
are in range -(2731 - 1) to +(2731 - 1) and 64-bit | the safety
unsigned int fields are in the range 0 to +(2731 - 1). | based on
Otherwise, you may obtain incorrect results. the program
compiled.

22.2.2.2.3 -fitodcalls

Promotes indirect-to-direct calls by placing conditional calls. Application or benchmarks that have a small
and deterministic set of target functions for function pointers passed as call parameters benefit from this
optimization. Indirect-to-direct call promotion transforms the code to use all possible determined targets
under runtime checks and falls back to the original code for all the other cases. Runtime checks are introduced
by the compiler for each of these possible function pointer targets followed by direct calls to the targets.

This is a link time optimization, which is invoked as -flto -fitodcalls

22.2.2.2.4 -fitodcallsbyclone

Performs value specialization for functions with function pointers passed as an argument. It does this
specialization by generating a clone of the function. The cloning of the function happens in the call chain
as needed, to allow conversion of indirect function call to direct call.

This complements -fitodcalls optimization and is also a link time optimization, which is invoked as -flto
-fitodcallsbyclone.

272 Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

22.2.2.2.5 -fremap-arrays

Transforms the data layout of a single dimensional array to provide better cache locality. This optimization
is effective only under -flto, as the whole program needs to be analyzed to perform this optimization, which
can be invoked as -flto -fremap-arrays.

22.2.2.2.6 -finline-aggressive

Enables improved inlining capability through better heuristics. This optimization is more effective when
used with -flto, as the whole program analysis is required to perform this optimization, which can be invoked
as -flto -finline-aggressive.

22.2.2.2.7 -fnt-store (non-temporal store)

Generates a non-temporal store instruction for array accesses in a loop with a large trip count.

22.2.2.2.8 -fnt-store=aggressive

This is an experimental option to generate non-temporal store instruction for array accesses in a loop, whose
iteration count cannot be determined at compile time. In this case, the compiler assumes the iteration count
to be huge.

22.2.2.2.9 Optimizations Through Driver -mllvimm <options>

The following optimization options must be invoked through driver -mllvm <options>:

22.2.2.2.9.1 -enable-partial-unswitch

Enables partial loop unswitching, which is an enhancement to the existing loop unswitching optimization
in LLVM. Partial loop unswitching hoists a condition inside a loop from a path for which the execution
condition remains invariant, whereas the original loop unswitching works for a condition that is completely
loop invariant. The condition inside the loop gets hoisted out from the invariant path, and the original loop
is retained for the path where the condition is variant.

22.2.2.2.9.2 -aggressive-loop-unswitch

Experimental option that enables aggressive loop unswitching heuristic (including -enable-partial-unswitch)
based on the usage of the branch conditional values. Loop unswitching leads to code bloat. Code bloat can
be minimized if the hoisted condition is executed more often. This heuristic prioritizes the conditions based
on the number of times they are used within the loop. The heuristic can be controlled with the following
options:

o -unswitch-identical-branches-min-count=<n>

— Enables unswitching of a loop with respect to a branch conditional value (B), where B appears in
at least <n> compares in the loop. This option is enabled with -aggressive-loop-unswitch. The
default value is 3.

22.2. Compiler Reference Guide 273

ROCm Documentation, Release 5.7.1

Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-min-count=<n>
Where, n is a positive integer and lower value of <n> facilitates more unswitching.
e -unswitch-identical-branches-max-count=<n>

— Enables unswitching of a loop with respect to a branch conditional value (B), where B appears in
at most <n> compares in the loop. This option is enabled with -aggressive-loop-unswitch. The
default value is 6.

Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-max-count=<n>

Where, n is a positive integer and higher value of <n> facilitates more unswitching.

Note: These options may facilitate more unswitching under some workloads. Since loop-unswitching
inherently leads to code bloat, facilitating more unswitching may significantly increase the code size.
Hence, it may also lead to longer compilation times.

22.2.2.2.9.3 -enable-strided-vectorization

Enables strided memory vectorization as an enhancement to the interleaved vectorization framework present
in LLVM. It enables the effective use of gather and scatter kind of instruction patterns. This flag must be
used along with the interleave vectorization flag.

22.2.2.2.9.4 -enable-epilog-vectorization

Enables vectorization of epilog-iterations as an enhancement to existing vectorization framework. This
enables generation of an additional epilog vector loop version for the remainder iterations of the original
vector loop. The vector size or factor of the original loop should be large enough to allow an effective epilog
vectorization of the remaining iterations. This optimization takes place only when the original vector loop
is vectorized with a vector width or factor of 16. This vectorization width of 16 may be overwritten by
-min-width-epilog-vectorization command-line option.

22.2.2.2.9.5 -enable-redundant-movs

Removes any redundant mov operations including redundant loads from memory and stores to memory.
This can be invoked using -W1,-plugin-opt=-enable-redundant-movs.

22.2.2.2.9.6 -merge-constant

Attempts to promote frequently occurring constants to registers. The aim is to reduce the size of the
instruction encoding for instructions using constants and obtain a performance improvement.

274 Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

22.2.2.2.9.7 -function-specialize

Optimizes the functions with compile time constant formal arguments.

22.2.2.2.9.8 -lv-function-specialization

Generates specialized function versions when the loops inside function are vectorizable and the arguments
are not aliased with each other.

22.2.2.2.9.9 -enable-vectorize-compares

Enables vectorization on certain loops with conditional breaks assuming the memory accesses are safely
bound within the page boundary.

22.2.2.2.9.10 -inline-recursion=[1,2,3,4]

Enables inlining for recursive functions based on heuristics where the aggressiveness of heuristics increases
with the level (1-4). The default level is 2. Higher levels may lead to code bloat due to expansion of recursive
functions at call sites.

Table 22.4: -inline-recursion Level and Their Effects

-inline-recursion value | Inline depth of heuristics used to enable inlining for recursive functions
1 1

2 1

3 1

4 10

This is more effective with -flto as the whole program needs to be analyzed to perform this optimization,
which can be invoked as -flto -inline-recursion=[1,2,3,4].

22.2.2.2.9.11 -reduce-array-computations=[1,2,3]

Performs array data flow analysis and optimizes the unused array computations.

Table 22.5: -reduce-array-computations Values and Their Effects

-reduce-array-computations value | Array elements eligible for elimination of computations
1 Unused

2 Zero valued

3 Both unused and zero valued

This optimization is effective with -flto as the whole program needs to be analyzed to perform this optimiza-
tion, which can be invoked as -flto -reduce-array-computations=[1,2,3].

22.2. Compiler Reference Guide 275

ROCm Documentation, Release 5.7.1

22.2.2.2.9.12 -global-vectorize-slp={true,false}

Vectorizes the straight-line code inside a basic block with data reordering vector operations. This option is
set to true by default.

22.2.2.2.9.13 -region-vectorize

Experimental flag for enabling vectorization on certain loops with complex control flow, which the normal
vectorizer cannot handle.

This optimization is effective with -flto as the whole program needs to be analyzed to perform this optimiza-
tion, which can be invoked as -flto -region-vectorize.

22.2.2.2.9.14 -enable-x86-prefetching

Enables the generation of x86 prefetch instruction for the memory references inside a loop or inside an
innermost loop of a loop nest to prefetch the second dimension of multidimensional array /memory references
in the innermost loop of a loop nest. This is an experimental pass; its profitability is being improved.

22.2.2.2.9.15 -suppress-fmas

Identifies the reduction patterns on FMA and suppresses the FMA generation, as it is not profitable on the
reduction patterns.

22.2.2.2.9.16 -enable-icm-vrp

Enables estimation of the virtual register pressure before performing loop invariant code motion. This
estimation is used to control the number of loop invariants that will be hoisted during the loop invariant
code motion.

22.2.2.2.9.17 -loop-splitting

Enables splitting of loops into multiple loops to eliminate the branches, which compare the loop induction
with an invariant or constant expression. This option is enabled under -O3 by default. To disable this
optimization, use -loop-splitting=false.

22.2.2.2.9.18 -enable-ipo-loop-split

Enables splitting of loops into multiple loops to eliminate the branches, which compares the loop induction
with a constant expression. This constant expression can be derived through inter-procedural analysis. This
option is enabled under -O3 by default. To disable this optimization, use -enable-ipo-loop-split=false.

276 Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

22.2.2.2.9.19 -compute-interchange-order

Enables heuristic for finding the best possible interchange order for a loop nest. To enable this option, use
-enable-loopinterchange. This option is set to false by default.

Usage:

-mllvm -enable-loopinterchange -mllvm -compute-interchange-order

22.2.2.2.9.20 -convert-pow-exp-to-int={true,false}

Converts the call to floating point exponent version of pow to its integer exponent version if the floating-point
exponent can be converted to integer. This option is set to true by default.

22.2.2.2.9.21 -do-lock-reordering={none,normal,aggressive}

Reorders the control predicates in increasing order of complexity from outer predicate to inner when it is
safe. The normal mode reorders simple expressions, while the aggressive mode reorders predicates involving
function calls if no side effects are determined. This option is set to normal by default.

22.2.2.2.9.22 -fuse-tile-inner-loop

Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set to false by
default.

22.2.2.2.9.23 -Hz,1,0x1 [Fortran]

Helps to preserve array index information for array access expressions which get linearized in the compiler
front end. The preserved information is used by the compiler optimization phase in performing optimizations
such as loop transformations. It is recommended that any user who is using optimizations such as loop
transformations and other optimizations requiring de-linearized index expressions should use the Hz option.
This option has no impact on any other aspects of the Flang front end.

22.2.2.3 Inline ASM Statements

Inline assembly (ASM) statements allow a developer to include assembly instructions directly in either host
or device code. While the ROCm compiler supports ASM statements, their use is not recommended for the
following reasons:

e The compiler’s ability to produce both correct code and to optimize surrounding code is impeded.
e The compiler does not parse the content of the ASM statements and so cannot “see” its contents.
e The compiler must make conservative assumptions in an effort to retain correctness.

e The conservative assumptions may yield code that, on the whole, is less performant compared to code
without ASM statements. It is possible that a syntactically correct ASM statement may cause incorrect
runtime behavior.

e ASM statements are often ASIC-specific; code containing them is less portable and adds a maintenance
burden to the developer if different ASICs are targeted.

22.2. Compiler Reference Guide 277

ROCm Documentation, Release 5.7.1

o Writing correct ASM statements is often difficult; we strongly recommend thorough testing of any use
of ASM statements.

Note: For developers who choose to include ASM statements in the code, AMD is interested in understanding
the use case and appreciates feedback at https://github.com/RadeonOpenCompute/ROCm /issues

22.2.2.4 Miscellaneous OpenMP Compiler Features

This section discusses features that have been added or enhanced in the OpenMP compiler.

22.2.2.4.1 Offload-arch Tool

An LLVM library and tool that is used to query the execution capability of the current system as well as
to query requirements of a binary file. It is used by OpenMP device runtime to ensure compatibility of an
image with the current system while loading it. It is compatible with target ID support and multi-image fat
binary support.

Usage:

offload-arch [Options| [Optional lookup-value]

When used without an option, offload-arch prints the value of the first offload arch found in the underlying
system. This can be used by various clang front ends. For example, to compile for OpenMP offloading on
your current system, invoke clang with the following command:

clang -fopenmp -fopenmp-targets="offload-arch" foo.c

If an optional lookup-value is specified, offload-arch will check if the value is either a valid offload-arch or a
codename and look up requested additional information.

The following command provides all the information for offload-arch gfx906:

offload-arch gfx906 -v

The options are listed below:

-a
Prints values for all devices. Do not stop at the first device found.
-m
Prints device code name (often found in pci.ids file).
-n
Prints numeric pci-id.
-t
Prints clang offload triple to use for the offload arch.
-V
Verbose. Implies: -a -m -n -t. For: all devices, prints codename, numeric value, and triple.
-f <file>

Prints offload requirements including offload-arch for each compiled offload image built into an appli-
cation binary file.

278 Chapter 22. Compilers and Tools

https://github.com/RadeonOpenCompute/ROCm/issues

ROCm Documentation, Release 5.7.1

Prints offload capabilities of the underlying system. This option is used by the language runtime to
select an image when multiple images are available. A capability must exist for each requirement of
the selected image.

There are symbolic link aliases amdgpu-offload-arch and nvidia-arch for offload-arch. These aliases return 1
if no AMD GCN GPU or CUDA GPU is found. These aliases are useful in determining whether architecture-
specific tests should be run or to conditionally load architecture-specific software.

22.2.2.4.2 Command-Line Simplification Using offload-arch Flag

Legacy mechanism of specifying offloading target for OpenMP involves using three flags, -fopenmp-targets,
-Xopenmp-target, and -march. The first two flags take a target triple (like amdgcen-amd-amdhsa or
nvptx64-nvidia-cuda), while the last flag takes device name (like gfx908 or sm_70) as input. Alterna-
tively, users of ROCmCC compiler can use the flag —offload-arch for a combined effect of the above three
flags.

Example:

Legacy mechanism

clang -fopenmp -target x86__64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgen-amd-amdhsa \
-march=gfx906 helloworld.c -o helloworld

Example:

Using offload-arch flag
clang -fopenmp -target x86__64-linux-gnu \
--offload-arch=gfx906 helloworld.c -0 helloworld.

To ensure backward compatibility, both styles are supported. This option is compatible with target ID
support and multi-image fat binaries.

22.2.2.4.3 Target ID Support for OpenMP

The ROCmCC compiler supports specification of target features along with the GPU name while specifying
a target offload device in the command line, using -march or --offload-arch options. The compiled image in
such cases is specialized for a given configuration of device and target features (target ID).

Example:

compiling for a gfx908 device with XNACK paging support turned ON

clang -fopenmp -target x86_ 64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgen-amd-amdhsa \
-march=gfx908:xnack+ helloworld.c -o helloworld

Example:

compiling for a gfx908 device with SRAMECC support turned OFF

clang -fopenmp -target x86_ 64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgen-amd-amdhsa \
-march=gfx908:sramecc- helloworld.c -o helloworld

Example:

22.2. Compiler Reference Guide 279

ROCm Documentation, Release 5.7.1

compiling for a gfx908 device with SRAMECC support turned ON and XNACK paging support turned OFF
clang -fopenmp -target x86_ 64-linux-gnu \

-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgen-amd-amdhsa \
-march=gfx908:sramecc+:xnack- helloworld.c -o helloworld

The target ID specified on the command line is passed to the clang driver using target-feature flag, to the
LLVM optimizer and back end using -mattr flag, and to linker using -plugin-opt=-mattr flag. This feature
is compatible with offload-arch command-line option and multi-image binaries for multiple architectures.

22.2.2.4.4 Multi-image Fat Binary for OpenMP

The ROCmCC compiler is enhanced to generate binaries that can contain heterogenous images. This het-
erogeneity could be in terms of:

e Images of different architectures, like AMD GCN and NVPTX
e Images of same architectures but for different GPUs, like gfx906 and gfx908

e Images of same architecture and same GPU but for different target features, like gfx908:xnack+ and
gfx908:xnack-

An appropriate image is selected by the OpenMP device runtime for execution depending on the capability
of the current system. This feature is compatible with target ID support and offload-arch command-line
options and uses offload-arch tool to determine capability of the current system.

Example:

clang -fopenmp -target x86_ 64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa,amdgen-amd-amdhsa \
-Xopenmp-target—amdgcn-amd-amdhsa -march=gfx906 \
-Xopenmp-target—=amdgcn-amd-amdhsa -march=gfx908 \
helloworld.c -o helloworld

Example:

clang -fopenmp -target x86__64-linux-gnu \
--offload-arch=gfx906 \
--offload-arch=gfx908 \

helloworld.c -o helloworld

Example:

clang -fopenmp -target x86__64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa,amdgen-amd-amdhsa,amdgen-amd-amdhsa,amdgen-amd-amdhsa |\
-Xopenmp-target—amdgen-amd-amdhsa -march=gfx908:sramecc+:xnack+ \
-Xopenmp-target—=amdgen-amd-amdhsa -march=gfx908:sramecc-:xnack+ \
-Xopenmp-target—amdgcn-amd-amdhsa -march=gfx908:sramecc+:xnack- \
-Xopenmp-target—amdgen-amd-amdhsa -march=gfx908:sramecc-:xnack- \

helloworld.c -o helloworld

The ROCmCC compiler creates an instance of toolchain for each unique combination of target triple and
the target GPU (along with the associated target features). clang-offload-wrapper tool is modified to insert
a new structure _ tgt image info along with each image in the binary. Device runtime is also modified to
query this structure to identify a compatible image based on the capability of the current system.

280 Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

22.2.2.4.5 Unified Shared Memory (USM)

The following OpenMP pragma is available on MI1200, and it must be executed with xnack+ support.

omp requires unified_ shared_memory

For more details on USM refer to the Asynchronous Behavior in OpenMP Target Regions section of the

OpenMP Guide.

22.2.2.5 Support Status of Other Clang Options

The following table lists the other Clang options and their support status.

Option Support Status Description

-HHH Supported Prints (but does not
--analyzer-output <value> Supported “Static analyzer repo
--analyze Supported Runs the static analy
-arcmt-migrate-emit-errors Unsupported Emits ARC errors eve
-arcmt-migrate-report-output <value> Unsupported Output path for the j
-byteswapio Supported Swaps byte-order for
-B <dir> Supported Adds <dir> to search
-CC Supported Includes comments fr
-cl-denorms-are-zero Supported OpenCL only. Allows
-cl-fast-relaxed-math Supported OpenCL only. Sets -c
-cl-finite-math-only Supported OpenCL only. Allows
-cl-fp32-correctly-rounded-divide-sqrt Supported OpenCL only. Specifi
-cl-kernel-arg-info Supported OpenCL only. Gener:
-cl-mad-enable Supported OpenCL only. Allows
-cl-no-signed-zeros Supported OpenCL only. Allows
-cl-opt-disable Supported OpenCL only. Disabl
-cl-single-precision-constant Supported OpenCL only. Treats
-cl-std= <value> Supported OpenCL language sta
-cl-strict-aliasing Supported OpenCL only. This o
-cl-uniform-work-group-size Supported OpenCL only. Define;
-cl-unsafe-math-optimizations Supported OpenCL only. Allows
--config <value> Supported Specifies configuratio
--cuda-compile-host-device Supported Compiles CUDA code
--cuda-device-only Supported Compiles CUDA code
--cuda-host-only Supported Compiles CUDA code
--cuda-include-ptx=<value> Unsupported Includes PTX for the
--cuda-noopt-device-debug Unsupported Enables device-side d
--cuda-path-ignore-env Unsupported Ignores environment 1
--cuda-path=<value> Unsupported CUDA installation ps
-cxx-isystem <directory> Supported Adds a directory to t]
-C Supported Includes comments in
-c Supported Runs only preprocess.
-dD Supported Prints macro definitic
-dependency-dot <value> Supported Writes DOT-formatte
-dependency-file <value> Supported Writes dependency ot
-dI Supported Prints include directi

22.2. Compiler Reference Guide

281

ROCm Documentation, Release 5.7.1

Option Support Status Description

-dM Supported Prints macro definitic
-dsym-dir <dir> Unsupported Outputs dSYMs (if a
-D <macro> Supported =<value>. Defines <
-emit-ast Supported Emits Clang AST file
-emit-interface-stubs Supported Generates interface st
-emit-llvm Supported Uses the LLVM repre
-emit-merged-ifs Supported Generates interface st
--emit-static-lib Supported Enables linker job to
-enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang | Supported Declares enabling triv
-E Supported Runs the preprocessor
-fAAPCSBitfieldLoad Unsupported Follows the AAPCS s
-faddrsig Supported Emits an address-sign
-faligned-allocation Supported Enables C+417 align
-fallow-editor-placeholders Supported Treats editor placehol
-fallow-fortran-gnu-ext Supported Allows Fortran GNU
-fansi-escape-codes Supported Uses ANSI escape coc
-fapple-kext Unsupported Uses Apple’s kernel e:
-fapple-link-rtlib Unsupported Forces linking of the ¢
-fapple-pragma-pack Unsupported Enables Apple gce-cos
-fapplication-extension Unsupported Restricts code to thos
-fbackslash Supported Treats backslash as C
-fbasic-block-sections= <value> Supported “Places each function
-fblocks Supported Enables the ‘blocks’ I
-fborland-extensions Unsupported Accepts non-standard
-fbuild-session-file= <file> Supported Uses the last modifice
-fbuild-session-timestamp= <time since Epoch in seconds> Supported Specifies starting time
-fbuiltin-module-map Unsupported Loads the Clang built
-feall-saved-x10 Unsupported Makes the x10 registe
-fecall-saved-x11 Unsupported Makes the x11 registe
-feall-saved-x12 Unsupported Makes the x12 registe
-fcall-saved-x13 Unsupported Makes the x13 registe
-fcall-saved-x14 Unsupported Makes the x14 registe
-fcall-saved-x15 Unsupported Makes the x15 registe
-fcall-saved-x18 Unsupported Makes the x18 registe
-fcall-saved-x8 Unsupported Makes the x8 register
-fcall-saved-x9 Unsupported Makes the x9 register
-fef-protection= <value> Unsupported Specifies the instrume
-fef-protection Unsupported Enables cf-protection
-fchar8_t Supported Enables C++ built-ir
-fclang-abi-compat= <version> Supported Attempts to match tl
-fecolor-diagnostics Supported Enables colors in diag
-fcomment-block-commands= <arg> Supported Treats each comma-se
-fcommon Supported Places uninitialized g]
-fcomplete-member-pointers Supported Requires member poi
-fconvergent-functions Supported Assumes functions to
-fcoroutines-ts Supported Enables support for t
-fcoverage-mapping Unsupported Generates coverage m
-fes-profile-generate= <directory> Unsupported Generates instrument
-fes-profile-generate Unsupported Generates instrument

282

Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

Option Support Status Description

-fcuda-approx-transcendentals Unsupported Uses approximate tra
-fcuda-flush-denormals-to-zero Supported Flushes denormal floa
-fcuda-short-ptr Unsupported Uses 32-bit pointers fi
-fexx-exceptions Supported Enables C++ excepti
-fdata-sections Supported Places each data in it
-fdebug-compilation-dir <value> Supported Specifies the compilat
-fdebug-default-version= <value> Supported Specifies the default 1
-fdebug-info-for-profiling Supported Emits extra debug ini
-fdebug-macro Supported Emits macro debug i1
-fdebug-prefix-map= <value> Supported Remaps file source pa
-fdebug-ranges-base-address Supported Uses DWARF base ac
-fdebug-types-section Supported Places debug types in
-fdeclspec Supported Allows __ declspec as
-fdelayed-template-parsing Supported Parses templated fun
-fdelete-null-pointer-checks Supported Treats usage of null p
-fdiagnostics-absolute-paths Supported Prints absolute paths
-fdiagnostics-hotness-threshold= <number> Unsupported Prevents optimizatior
-fdiagnostics-parseable-fixits Supported Prints fix-its in machi
-fdiagnostics-print-source-range-info Supported Prints source range sj
-fdiagnostics-show-hotness Unsupported Enables profile hotnes
-fdiagnostics-show-note-include-stack Supported Displays include stack
-fdiagnostics-show-option Supported Prints option name w
-fdiagnostics-show-template-tree Supported Prints a template con
-fdigraphs Supported Enables alternative tc
-fdiscard-value-names Supported Discards value names
-fdollars-in-identifiers Supported Allows “$” in identifie
-fdouble-square-bracket-attributes Supported Enables ‘[[]]” attribute
-fdwarf-exceptions Unsupported Uses DWARF style e
-feliminate-unused-debug-types Supported Eliminates debug infc
-fembed-bitcode-marker Supported Embeds placeholder I
-fembed-bitcode= <option> Supported Embeds LLVM bitcoc
-fembed-bitcode Supported Embeds LLVM IR bit
-femit-all-decls Supported Emits all declarations
-femulated-tls Supported Uses emutls functions
-fenable-matrix Supported Enables matrix data 1
-fexceptions Supported Enables support for e
-fexperimental-new-constant-interpreter Supported Enables the experime
-fexperimental-new-pass-manager Supported Enables an experimer
-fexperimental-relative-c+=abi-vtables Supported Uses the experimenta
-fexperimental-strict-floating-point Supported Enables experimental
-ffast-math Supported Allows aggressive, los:
-flile-prefix-map= <value> Supported Remaps file source pa
-ffine-grained-bitfield-accesses Supported Uses separate accesse:
-flixed-form Supported Enables fixed-form for
-ffixed-point Supported Enables fixed point ty
-flixed-r19 Unsupported Reserves the r19 regis
-flixed-r9 Unsupported Reserves the 19 regist
-flixed-x10 Unsupported Reserves the x10 regis
-flixed-x11 Unsupported Reserves the x11 regi:

22.2. Compiler Reference Guide

283

ROCm Documentation, Release 5.7.1

Option Support Status Description

-flixed-x12 Unsupported Reserves the x12 regi:
-flixed-x13 Unsupported Reserves the x13 regis
-flixed-x14 Unsupported Reserves the x14 regis
-flixed-x15 Unsupported Reserves the x15 regis
-flixed-x16 Unsupported Reserves the x16 regi:
-flixed-x17 Unsupported Reserves the x17 regis
-flixed-x18 Unsupported Reserves the x18 regi:
-flixed-x19 Unsupported Reserves the x19 regis
-flixed-x1 Unsupported Reserves the x1 regist
-flixed-x20 Unsupported Reserves the x20 regis
-flixed-x21 Unsupported Reserves the x21 regi:
-flixed-x22 Unsupported Reserves the x22 regis
-flixed-x23 Unsupported Reserves the x23 regi
-flixed-x24 Unsupported Reserves the x24 regis
-flixed-x25 Unsupported Reserves the x25 regi
-flixed-x26 Unsupported Reserves the x26 regis
-flixed-x27 Unsupported Reserves the x27 regi
-flixed-x28 Unsupported Reserves the x28 regis
-flixed-x29 Unsupported Reserves the x29 regi:
-flixed-x2 Unsupported Reserves the x2 regist
-flixed-x30 Unsupported Reserves the x30 regis
-flixed-x31 Unsupported Reserves the x31 regi:
-flixed-x3 Unsupported Reserves the x3 regist
-flixed-x4 Unsupported Reserves the x4 regist
-flixed-x5 Unsupported Reserves the x5 regist
-flixed-x6 Unsupported Reserves the x6 regist
-flixed-x7 Unsupported Reserves the x7 regist
-flixed-x8 Unsupported Reserves the x8 regist
-flixed-x9 Unsupported Reserves the x9 regist
-fforce-dwarf-frame Supported Mandatorily emits a «
-fforce-emit-vtables Supported Emits more virtual ta
-fforce-enable-int128 Supported Enables support for i
-ffp-contract= <value> Supported Forms fused FP ops (
-ffp-exception-behavior= <value> Supported Specifies the exceptio
-ffp-model= <value> Supported Controls the semantic
-ffree-form Supported Enables free-form fori
-ffreestanding Supported Asserts the compilati
-ffunc-args-alias Supported Allows the function a;
-ffunction-sections Supported Places each function i
-fglobal-isel Supported Enables the global ins
-fenu-keywords Supported Allows GNU-extensio
-fgnu-runtime Unsupported Generates output con
-fgnu&9-inline Unsupported Uses the gnu89 inline
-fgnuc-version= <value> Supported Sets various macros ti
-fepu-allow-device-init Supported Allows device-side ini
-fgpu-rdc Supported Generates relocatable
-thip-new-launch-api Supported Uses new kernel launc
-fignore-exceptions Supported Enables support for i
-fimplicit-module-maps Unsupported Implicitly searches th

284

Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

Option Support Status Description
-finline-functions Supported Inlines suitable functi
-finline-hint-functions Supported Inlines functions that
-finstrument-function-entry-bare Unsupported Allows instrument fur
-finstrument-functions-after-inlining Unsupported Similar to -finstrumer
-finstrument-functions Unsupported Generates calls to ins
-fintegrated-as Supported Enables the integrate:
-fintegrated-ccl Supported Runs ccl in-process
-fjump-tables Supported Uses jump tables for |
-fkeep-static-consts Supported Keeps static const vai
-flax-vector-conversions= <value> Supported Enables implicit vectc
-fito-jobs= <value> Unsupported Controls the backend
-flto= <value> Unsupported Sets LTO mode to eit
-flto Unsupported Enables LTO in “full’
-fmacro-prefix-map= <value> Supported Remaps file source pa
-fmath-errno Supported Requires math functic
-fmax-tokens= <value> Supported Specifies max total nt
-fmax-type-align= <value> Supported Specifies the maximun
-fmemory-profile Supported Enables heap memory
-fmerge-all-constants Supported Allows merging of cor
-fmessage-length= <value> Supported Formats message diag
-fmodule-file=] <name>=] <file> Unsupported Specifies the mapping
-fmodule-map-file= <file> Unsupported Loads the specified m
-fmodule-name= <name> Unsupported Specifies the name of
-fmodules-cache-path= <directory> Unsupported Specifies the module
-fmodules-decluse Unsupported Asserts declaration of
-fmodules-disable-diagnostic-validation Unsupported Disables validation of
-fmodules-ignore-macro= <value> Unsupported Ignores the definition
-fmodules-prune-after= <seconds> Unsupported Specifies the interval
-fmodules-prune-interval= <seconds> Unsupported Specifies the interval
-fmodules-search-all Unsupported Searches even non-im
-fmodules-strict-decluse Unsupported Similar to -fmodules-¢
-fmodules-ts Unsupported Enables support for t
-fmodules-user-build-path <directory> Unsupported Specifies the module 1
-fmodules-validate-input-files-content Supported Validates PCM input
-fmodules-validate-once-per-build-session Unsupported Prohibits verification
-fmodules-validate-system-headers Supported Validates the system
-fmodules Unsupported Enables the “modules
-fms-compatibility-version= <value> Supported Specifies the dot-sepa
-fms-compatibility Supported Enables full Microsoft
-fms-extensions Supported Accepts some non-sta
-fmsc-version= <value> Supported Specifies the Microsof
-fnew-alignment= <align> Supported Specifies the largest a
-fno-addrsig Supported Prohibits emitting an
-fno-allow-fortran-gnu-ext Supported Allows Fortran GNU
-fno-assume-sane-operator-new Supported Prohibits the assump:
-fno-autolink Supported Disables generation o
-fno-backslash Supported Allows treatment of b
-fno-builtin- <value> Supported Disables implicit buil
-fno-builtin Supported Disables implicit builf

22.2. Compiler Reference Guide

285

ROCm Documentation, Release 5.7.1

Option Support Status Description

-fno-c+=static-destructors Supported Disables C++ static «
-fno-char8 t Supported Disables C++ built-i
-fno-color-diagnostics Supported Disables colors in diay
-fno-common Supported Compiles common glc
-fno-complete-member-pointers Supported Eliminates the require
-fno-constant-cfstrings Supported Disables creation of C
-fno-coverage-mapping Supported Disables code coverag
-fno-crash-diagnostics Supported Disables auto-generat
-fno-cuda-approx-transcendentals Unsupported Eliminates the usage
-fno-debug-macro Supported Prohibits emitting the
-fno-declspec Unsupported Disallows declspec as
-fno-delayed-template-parsing Supported Disables delayed tem;
-fno-delete-null-pointer-checks Supported Prohibits the treatme
-fno-diagnostics-fixit-info Supported Prohibits including fi:
-fno-digraphs Supported Disallows alternative
-fno-discard-value-names Supported Prohibits discarding +
-fno-dollars-in-identifiers Supported Disallows ‘$’ in identi
-fno-double-square-bracket-attributes Supported Disables ‘[[]]” attribut
-fno-elide-constructors Supported Disables C++ copy c
-fno-elide-type Supported Prohibits eliding type
-fno-eliminate-unused-debug-types Supported Emits debug info for |
-fno-exceptions Supported Disables support for ¢
-fno-experimental-new-pass-manager Supported Disables an experimes
-fno-experimental-relative-c+=+abi-vtables Supported Prohibits using the e>
-fno-fine-grained-bitfield-accesses Supported Allows using large-int
-fno-fixed-form Supported Disables fixed-form fo
-fno-fixed-point Supported Disables fixed point t;
-fno-force-enable-int128 Supported Disables support for i
-fno-fortran-main Supported Prohibits linking in F
-fno-free-form Supported Disables free-form for
-fno-func-args-alias Supported Allows the function a
-fno-global-isel Supported Disables the global in
-fno-gnu-inline-asm Supported Disables GNU style i1
-fno-gpu-allow-device-init Supported Disallows device-side
-fno-hip-new-launch-api Supported Disallows new kernel
-fno-integrated-as Supported Disables the integrate
-fno-integrated-ccl Supported Spawns a separate pr
-fno-jump-tables Supported Disallows jump tables
-fno-keep-static-consts Supported Prohibits keeping staf
-fno-lto Supported Disables LTO mode (
-fno-memory-profile Supported Disables heap memor;
-fno-merge-all-constants Supported Disallows merging of
-fno-no-access-control Supported Disables C++ access
-fno-objc-infer-related-result-type Supported Prohibits inferring Ol
-fno-operator-names Supported Disallows treatment ¢
-fno-pch-codegen Supported Disallows code-genera
-fno-pch-debuginfo Supported Prohibits generation ¢
-fno-plt Supported Asserts usage of GO
-fno-preserve-as-comments Supported Prohibits preserving c

286 Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

Option Support Status Description

-fno-profile-generate Supported Disables generation o
-fno-profile-instr-generate Supported Disables generation o
-fno-profile-instr-use Supported Disables usage of inst
-fno-register-global-dtors-with-atexit Supported Disallows usage of ate
-fno-rtlib-add-rpath Supported Prohibits adding -rpa
-fno-rtti-data Supported Disables generation o
-fno-rtti Supported Disables generation o

-fno-sanitize-address-poison-custom-array-cookie

Supported on Host only

Disables poisoning of

-fno-sanitize-address-use-after-scope

Supported on Host only

Disables use-after-sco

-fno-sanitize-address-use-odr-indicator

Supported on Host only

Disables ODR indicat

-fno-sanitize-blacklist

Supported on Host only

Prohibits using black]

-fno-sanitize-cfi-canonical-jump-tables

Supported on Host only

Prohibits making the

-fno-sanitize-cfi-cross-dso

Supported on Host only

Disables control flow

-fno-sanitize-coverage= <value>

Supported on Host only

Disables specified feat

-fno-sanitize-memory-track-origins

Supported on Host only

Disables origins track

-fno-sanitize-memory-use-after-dtor

Supported on Host only

Disables use-after-des

-fno-sanitize-recover= <value>

Supported on Host only

Disables recovery for

-fno-sanitize-stats

Supported on Host only

Disables sanitizer stat

-fno-sanitize-thread-atomics

Supported on Host only

Disables atomic opere

-fno-sanitize-thread-func-entry-exit

Supported on Host only

Disables function ent:

-fno-sanitize-thread-memory-access

Supported on Host only

Disables memory acce

-fno-sanitize-trap= <value>

Supported on Host only

Disables trapping for

-fno-sanitize-trap

Supported on Host only

Disables trapping for

-fno-short-wchar Supported Forces wchar_t to be
-fno-show-column Supported Prohibits including cc
-fno-show-source-location Supported Prohibits including sc
-fno-signed-char Supported char is unsigned
-fno-signed-zeros Supported Allows optimizations
-fno-spell-checking Supported Disables spell-check
-fno-split-machine-functions Supported Disables late function
-fno-stack-clash-protection Supported Disables stack clash p
-fno-stack-protector Supported Disables the use of st:
-fno-standalone-debug Supported Limits debug informa
-fno-strict-float-cast-overflow Supported Relaxes language rule
-fno-strict-return Supported Prohibits treating the
-fno-sycl Unsupported Disables SYCL kernel
-fno-temp-file Supported Asserts direct creatio
-fno-threadsafe-statics Supported Prohibits emitting co
-fno-trigraphs Supported Prohibits processing t
-fno-unique-section-names Supported Prohibits the usage o
-fno-unroll-loops Supported Turns off the loop un
-fno-use-cxa-atexit Supported Prohibits the usage o
-fno-use-flang-math-libs Supported Asserts the usage of I
-fno-use-init-array Supported Asserts the usage of ..
-fno-visibility-inlines-hidden-static-local-var Supported Disables -fvisibility-in
-fno-xray-function-index Unsupported Allows omitting funct
-fno-zero-initialized-in-bss Supported Prohibits placing zerc
-fobjc-arc-exceptions Unsupported Asserts using EH-safe
-fobjc-arc Unsupported Synthesizes retain an

22.2. Compiler Reference Guide

287

ROCm Documentation, Release 5.7.1

Option Support Status Description

-fobjc-exceptions Unsupported Enables Objective-C ¢
-fobjc-runtime= <value> Unsupported Specifies the target O
-fobjc-weak Unsupported Enables ARC-style wr
-fopenmp-simd Unsupported Emits OpenMP code
-fopenmp-targets= <value> Unsupported Specifies a comma-sej
-fopenmp Unsupported Parses OpenMP prag
-foptimization-record-file= <file> Supported Specifies the output r
-foptimization-record-passes= <regex> Supported Exclusively allows the
-forder-file-instrumentation Supported Generates instrument
-fpack-struct= <value> Unsupported Specifies the default 1
-fpascal-strings Supported Recognizes and const:
-fpass-plugin= <dsopath> Supported Loads pass plugin fro
-fpatchable-function-entry= <N,M> Supported Generates M NOPs b
-fpce-struct-return Unsupported Overrides the default
-fpch-codegen Supported Generates code for us
-fpch-debuginfo Supported Generates debug info
-fpch-instantiate-templates Supported Instantiates templates
-fpch-validate-input-files-content Supported Validates PCH input
-fplugin= <dsopath> Supported Loads the named plug
-fprebuilt-module-path= <directory> Unsupported Specifies the prebuilt
-fprofile-exclude-files= <value> Unsupported Exclusively instrumer
-fprofile-filter-files= <value> Unsupported Exclusively instrumer
-fprofile-generate= <directory> Unsupported Generates instrument
-fprofile-generate Unsupported Generates instrument
-fprofile-instr-generate= <file> Unsupported Generates instrument
-fprofile-instr-generate Unsupported Generates instrument
-fprofile-instr-use= <value> Unsupported Uses instrumentation
-fprofile-remapping-file= <file> Unsupported Uses the remappings |
-fprofile-sample-accurate Unsupported Specifies that the san
-fprofile-sample-use= <value> Unsupported Enables sample-based
-fprofile-use= <pathname> Unsupported Uses instrumentation
-freciprocal-math Supported Allows division opera
-freg-struct-return Unsupported Overrides the default
-fregister-global-dtors-with-atexit Supported Uses atexit or ___cxa
-frelaxed-template-template-args Supported Enables C++17 relax
-freroll-loops Supported Turns on loop reroller
-fropi Unsupported Generates read-only |
-frtlib-add-rpath Supported Adds -rpath with arcl
-frwpi Unsupported Generates read-write
-fsanitize-address-field-padding= <value> Supported on Host only | Specifies the level of f
-fsanitize-address-globals-dead-stripping Supported on Host only | Enables linker dead s
-fsanitize-address-poison-custom-array-cookie Supported on Host only | Enables poisoning of
-fsanitize-address-use-after-scope Supported on Host only | Enables use-after-scoy
-fsanitize-address-use-odr-indicator Supported on Host only | Enables ODR indicat
-fsanitize-blacklist= <value> Supported on Host only | Specifies the path to |
-fsanitize-cfi-canonical-jump-tables Supported on Host only | Makes the jump table
-fsanitize-cfi-cross-dso Supported on Host only | Enables control flow i
-fsanitize-cfi-icall-generalize-pointers Supported on Host only | Generalizes pointers i
-fsanitize-coverage-allowlist= <value> Supported on Host only | Restricts sanitizer coy

288

Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

Option

Support Status

Description

-fsanitize-coverage-blacklist= <value>

Supported on Host only

Deprecated; use -fsan

-fsanitize-coverage-blocklist= <value>

Supported on Host only

Disables sanitizer cov

-fsanitize-coverage-whitelist= <value>

Supported on Host only

Deprecated; use -fsan

-fsanitize-coverage= <value>

Supported on Host only

Specifies the type of

-fsanitize-hwaddress-abi= <value>

Supported on Host only

Selects the HWAddre:

-fsanitize-memory-track-origins= <value>

Supported on Host only

Enables origins tracki

-fsanitize-memory-track-origins

Supported on Host only

Enables origins tracki

-fsanitize-memory-use-after-dtor

Supported on Host only

Enables use-after-dest

-fsanitize-recover= <value>

Supported on Host only

Enables recovery for s

-fsanitize-stats

Supported on Host only

Enables sanitizer stat

-fsanitize-system-blacklist= <value>

Supported on Host only

Specifies the path to :

-fsanitize-thread-atomics

Supported on Host only

Enables atomic opera

-fsanitize-thread-func-entry-exit

Supported on Host only

Enables function entr

-fsanitize-thread-memory-access

Supported on Host only

Enables memory acce

-fsanitize-trap= <value>

Supported on Host only

Enables trapping for

-fsanitize-trap

Supported on Host only

Enables trapping for

-fsanitize-undefined-strip-path-components= <number>

Supported on Host only

Strips (or keeps only,

-fsanitize= <check>

Supported on Host only

Turns on runtime che

-fsave-optimization-record= <format>

Supported

Generates an optimiz

-fsave-optimization-record Supported Generates a YAML o
-fseh-exceptions Supported Uses SEH style excep
-fshort-enums Supported Allocates to an enum
-fshort-wchar Unsupported Forces wchar_t to be
-fshow-overloads= <value> Supported Specifies which overlo
-fsigned-char Supported Asserts that the char
-fsized-deallocation Supported Enables C++14 sized
-fsjlj-exceptions Supported Uses SjLj style except
-fslp-vectorize Supported Enables the superwor
-fsplit-dwarf-inlining Unsupported Provides minimal deb
-fsplit-lto-unit Unsupported Enables splitting of tl
-fsplit-machine-functions Supported Enables late function
-fstack-clash-protection Supported Enables stack clash p
-fstack-protector-all Unsupported Enables stack protect
-fstack-protector-strong Unsupported Enables stack protect
-fstack-protector Unsupported Enables stack protect
-fstack-size-section Supported Emits section contain
-fstandalone-debug Supported Emits full debug info
-fstrict-enums Supported Enables optimization:s
-fstrict-float-cast-overflow Supported Assumes the overflow
-fstrict-vtable-pointers Supported Enables optimizations
-fsycl Unsupported Enables SYCL kernel
-fsystem-module u Builds this module as
-fthin-link-bitcode= <value> Supported Writes minimized bitc
-fthinlto-index= <value> Unsupported Performs ThinLL.TO in
-ftime-trace-granularity= <value> Supported Specifies the minimur
-ftime-trace Supported Turns on time profile:
-ftrap-function= <value> Unsupported Issues call to specifiec
-ftrapv-handler= <function name> Unsupported Specifies the function
-ftrapv Supported Traps on integer over:

22.2. Compiler Reference Guide

289

ROCm Documentation, Release 5.7.1

Option Support Status Description
-ftrigraphs Supported Processes trigraph sec
-ftrivial-auto-var-init-stop-after= <value> Supported Stops initializing trivi
-ftrivial-auto-var-init= <value> Supported Initializes trivial auto
-funique-basic-block-section-names Supported Uses unique names fo
-funique-internal-linkage-names Supported Makes the Internal Li
-funroll-loops Supported Turns on loop unrolle
-fuse-flang-math-libs Supported Uses Flang internal r1
-fuse-line-directives Supported Uses #line in preproc
-fvalidate-ast-input-files-content Supported Computes and stores
-fveclib= <value> Unsupported Uses the given vector
-fvectorize Unsupported Enables the loop vect
-fverbose-asm Supported Generates verbose ass
-fvirtual-function-elimination Supported Enables dead virtual
-fvisibility-global-new-delete-hidden Supported Marks the visibility o
-fvisibility-inlines-hidden-static-local-var Supported Marks the visibility o
-fvisibility-inlines-hidden Supported Marks the visibility o
-fvisibility-ms-compat Supported Marks the visibility o
-fvisibility= <value> Supported Sets the default symb
-fwasm-exceptions Unsupported Uses WebAssembly st
-fwhole-program-vtables Unsupported Enables whole progra
-fwrapv Supported Treats signed integer
-fwritable-strings Supported Stores string literals ¢
-fxray-always-emit-customevents Unsupported Mandates emitting
-fxray-always-emit-typedevents Unsupported Mandates emitting
-fxray-always-instrument= <value> Unsupported Deprecated: Specifies
-fxray-attr-list= <value> Unsupported Specifies the filename
-fxray-ignore-loops Unsupported Prohibits instrumenti
-fxray-instruction-threshold= <value> Unsupported Sets the minimum fur
-fxray-instrumentation-bundle= <value> Unsupported Specifies which XRay
-fxray-instrument Unsupported Generates XRay instr
-fxray-link-deps Unsupported Informs Clang to add
-fxray-modes= <value> Unsupported Specifies the list of m
-fxray-never-instrument= <value> Unsupported Deprecated: Specifies
-fzvector Supported Enables System z vec
-F <value> Unsupported Adds directory to the
—gce-toolchain= <value> Supported Uses the gce toolchair
-gcodeview-ghash Supported Emits type record has
-gcodeview Supported Generates code view ¢
-gdwarf-2 Supported Generates source-leve
-gdwarf-3 Supported Generates source-leve
-gdwarf-4 Supported Generates source-leve
-gdwarf-5 Supported Generates source-leve
-gdwarf Supported Generates source-leve
-gembed-source Supported Embeds source text i
-gline-directives-only Supported Emits debug line info
-gline-tables-only Supported Emits debug line nun
-gmodules Supported Generates debug info
-gno-embed-source Supported Restores the default |
-gno-inline-line-tables Supported Prohibits emitting inl

290

Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

Option Support Status Description

—gpu-max-threads-per-block= <value> Supported Specifies the default 1
-gsplit-dwarf= <value> Supported Sets DWARF fission 1
-gz= <value> Supported Specifies DWARF del
-g7 Supported Shows DWARF debug
-G <size> Unsupported Puts objects of maxin
-g Supported Generates source-leve
—help-hidden Supported Displays help for hidc
-help Supported Displays available opt
~hip-device-lib= <value> Supported Specifies the HIP dev
—hip-link Supported Links clang-offload-bu
—hip-version= <value> Supported Allows specification o
-H Supported Shows header “includ
-I- Supported Restricts all prior -I f
-ibuiltininc Supported Enables built-in #inc
-idirafter <value> Supported Adds the directory to
-iframeworkwithsysroot <directory> Unsupported Adds the directory to
-iframework <value> Unsupported Adds the directory to
-imacros <file> Supported Specifies the file cont:
-include-pch <file> Supported Includes the specified
-include <file> Supported Includes the specified
-index-header-map Supported Makes the next incluc
-iprefix <dir> Supported Sets the -iwithprefix/
-iquote <directory> Supported Adds the directory to
-isysroot <dir> Supported Sets the system root
-isystem-after <directory> Supported Adds the directory to
-isystem <directory> Supported Adds the directory to
-ivfsoverlay <value> Supported Overlays the virtual f
-iwithprefixbefore <dir> Supported Sets the directory to -
-iwithprefix <dir> Supported Sets the directory to
-iwithsysroot <directory> Supported Adds directory to SY:
-I <dir> Supported Adds directory to inc!
—libomptarget-nvptx-path= <value> Unsupported Specifies path to libo
-L <dir> Supported Adds directory to libr
-mabicalls Unsupported Enables SVR4-style p
-maix-struct-return Unsupported Returns all structs in
-malign-branch-boundary= <value> Supported Specifies the boundar
-malign-branch= <value> Supported Specifies the types of
-malign-double Supported Aligns doubles to two
-Mallocatable= <value> Unsupported Provides semantics fo
-mbackchain Unsupported Links stack frames th
-mbranch-protection= <value> Unsupported Enforces targets of in
-mbranches-within-32B-boundaries Supported Aligns selected brancl
-mcmodel=medany Unsupported Equivalent to -mcmoc
-mcmodel=medlow Unsupported Equivalent to -mcmoc
-mcmse Unsupported Allows use of CMSE |
-mcode-object-v3 Supported Legacy option to spec
-mcode-object-version= <version> Supported Specifies code object
-mcre Unsupported Allows use of CRC in
-mcumode Supported Specifies CU (-mcume

22.2. Compiler Reference Guide

291

ROCm Documentation, Release 5.7.1

Option Support Status Description
-mdouble= <value> Supported Forces double to be 3
-MD Supported Writes a depfile conta
-meabi <value> Supported Sets EABI type. Valu
-membedded-data Unsupported Places constants in tk
-menable-experimental-extensions Unsupported Enables usage of expe
-mexec-model= <value> Unsupported Specifies the executio
-mexecute-only Unsupported Disallows generation «
-mextern-sdata Unsupported Assumes externally d
-mfentry Unsupported Inserts calls to fentry
-mfix-cortex-a53-835769 Unsupported Workaround Cortex-/
0 Unsupported Asserts usage of 32-bi
0 Unsupported Asserts usage of 64-bi
-MF <file> Supported Writes depfile output
-mgeneral-regs-only Unsupported Generates code that
-mglobal-merge Supported Enables merging of gl
-mgpopt Unsupported Allows using GP relaf
-MG Supported Adds missing headers
-mharden-sls= <value> Unsupported Sets straight-line spec
-mhvx-length= <value> Unsupported Sets Hexagon Vector
-mhvx= <value> Unsupported Sets Hexagon Vector
-mhvx Unsupported Enables Hexagon Vec
-miamcu Unsupported Allows using Intel M(
—migrate Unsupported Runs the migrator
-mincremental-linker-compatible Supported (integrated-as) Emits
-mindirect-jump= <value> Unsupported Changes indirect jum
-Minform= <value> Supported Sets error level of me:
-mios-version-min= <value> Unsupported Sets i0OS deployment
-MJ <value> Unsupported Writes a compilation
-mllvm <value> Supported Specifies additional a1
-mlocal-sdata Unsupported Extends the -G behax
-mlong-calls Supported Generates branches w
-mlong-double-128 Supported on Host only | Forces long double to
-mlong-double-64 Supported Forces long double to
-mlong-double-80 Supported on Host only | Forces long double to
-mlvi-cfi Supported on Host only | Enables only control-
-mlvi-hardening Supported on Host only | Enables all mitigatior
-mmacosx-version-min= <value> Unsupported Sets Mac OS X deplo
-mmadd4 Supported Enables the generatio
-mmark-bti-property Unsupported Adds .note.gnu.prope
-MMD Supported Writes a depfile conta
-mmemops Supported Enables generation of
-mms-bitfields Unsupported Sets the default struc
-mmsa Unsupported Enables MSA ASE (]
-mmt Unsupported Enables MT ASE (M
-MM Supported Similar to -MMD but
-mno-abicalls Unsupported Disables SVR4-style |
-INNo-Cre Unsupported Disallows use of CRC
-mno-embedded-data Unsupported Prohibits placing cons
-mno-execute-only Unsupported Allows generation of ¢

292

Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

Option Support Status Description
-mno-extern-sdata Unsupported Prohibits assuming tl
-mno-fix-cortex-a53-835769 Unsupported Disallows workaround
-mno-global-merge Supported Disables merging of g
-mno-gpopt Unsupported Prohibits using GP re
-mno-hvx Unsupported Disables Hexagon Vec
-mno-implicit-float Supported Prohibits generating i
-mno-incremental-linker-compatible Supported (integrated-as) Emits
-mno-local-sdata Unsupported Prohibits extending t.
-mno-long-calls Supported Restores the default 1
-mno-lvi-cfi Supported on Host only | Disables control-flow
-mno-lvi-hardening Supported on Host only | Disables mitigations f
-mno-madd4 Supported Disables the generatic
-mno-memops Supported Disables the generatic
-mno-movt Supported Disallows usage of mc
-mno-ms-bitfields Supported Prohibits setting the .
-mno-msa Unsupported Disables MSA ASE (]
-mno-mt Unsupported Disables MT ASE (M
-mno-neg-immediates Supported Disallows converting i
-mno-nvj Supported Disables generation o
-mno-nvs Supported Disables generation o
-mno-outline Unsupported Disables function out
-mno-packets Supported Disables generation o
-mno-relax Supported Disables linker relaxa
-mno-restrict-it Unsupported Allows generation of ¢
-mno-save-restore Unsupported Disables usage of libr:
-mno-seses Unsupported Disables speculative e
-mno-stack-arg-probe Supported Disables stack probes
-mno-tls-direct-seg-refs Supported Disables direct TLS a
-mno-unaligned-access Unsupported Forces all memory ac
-mno-wavefrontsize64 Supported Asserts wavefront size
-mnocrc Unsupported Disallows usage of CFE
-mnop-mecount Supported Generates mcount/__
-mnvj Supported Enables generation of
-mnvs Supported Enables generation of
-module-dependency-dir <value> Unsupported Specifies directory for
-module-file-info Unsupported Provides information
-momit-leaf-frame-pointer Supported Omits frame pointer s
-moutline Unsupported Enables function outl
-mpacked-stack Unsupported Asserts the usage of 1
-mpackets Supported Enables generation of
-mpad-max-prefix-size= <value> Supported Specifies maximum ni
-mpie-copy-relocations Supported Asserts the usage of ¢
-mprefer-vector-width= <value> Unsupported Specifies preferred ve
-MP Supported Creates phony target
-mqdsp6-compat Unsupported Enables hexagon-qdsj
-MQ <value> Supported Specifies the name of
-mrecord-mcount Supported Generates a ___mcou
-mrelax-all Supported (integrated-as) Relax
-mrelax Supported Enables linker relaxat

22.2. Compiler Reference Guide

293

ROCm Documentation, Release 5.7.1

Option Support Status Description

-mrestrict-it Unsupported Disallows generation «
-mrtd Unsupported Makes StdCall calling
-msave-restore Unsupported Enables using library
-mseses Unsupported Enables speculative e:
-msign-return-address= <value> Unsupported Specifies the return a
-msmall-data-limit= <value> Supported Puts global and static
-msoft-float Supported Uses software floating
-mSsram-ecc Supported Legacy option to spec
-mstack-alignment= <value> Unsupported Sets the stack alignm
-mstack-arg-probe Unsupported Enables stack probes
-mstack-probe-size= <value> Unsupported Sets the stack probe s
-mstackrealign Unsupported Forces realign the sta,
-msve-vector-bits= <value> Unsupported Specifies the size in b
-msvr4-struct-return Unsupported Returns small structs
-mthread-model <value> Supported Specifies the thread n
-mtls-direct-seg-refs Supported Enables direct TLS a
-mtls-size= <value> Unsupported Specifies the bit size «
-mtp= <value> Unsupported Specifies the thread p
-mtune= <value> Supported on Host only | Supported on X86 on
-MT <value> Unsupported Specifies the name of
-munaligned-access Unsupported Allows memory acces
-MV Supported Uses NMake/Jom for:
-mwavefrontsize64 Supported Asserts wavefront size
-mxnack Supported Legacy option to spec
-M Supported Similar to -MD but a
—no-cuda-include-ptx= <value> Supported Prohibits including P
—no-cuda-version-check Supported Disallows erroring out
-no-flang-libs Supported Prohibits linking agai
—no-offload-arch= <value> Supported Removes CUDA /HIP
—no-system-header-prefix= <prefix> Supported Assumes no system h
-nobuiltininc Supported Disables built-in #inc
-nogpuinc Supported Prohibits adding CUI
-nogpulib Supported Prohibits linking devi
-nostdinc++ Unsupported Disables standard #ir
-ObjC++ Unsupported Treats source input fi
-objcmt-atomic-property Unsupported Enables migration to
-objcmt-migrate-all Unsupported Enables migration to
-objecmt-migrate-annotation Unsupported Enables migration to
-objcmt-migrate-designated-init Unsupported Enables migration to
-objcmt-migrate-instancetype Unsupported Enables migration to
-objcmt-migrate-literals Unsupported Enables migration to
-objcmt-migrate-ns-macros Unsupported Enables migration to
-objcmt-migrate-property-dot-syntax Unsupported Enables migration of
-objcmt-migrate-property Unsupported Enables migration to
-objecmt-migrate-protocol-conformance Unsupported Enables migration to
-objcmt-migrate-readonly-property Unsupported Enables migration to
-objcmt-migrate-readwrite-property Unsupported Enables migration to
-objcmt-migrate-subscripting Unsupported Enables migration to
-objcmt-ns-nonatomic-iosonly Unsupported Enables migration to

294

Chapter 22. Compilers and Tools

ROCm Documentation, Release 5.7.1

Option Support Status Description
-objcmt-returns-innerpointer-property Unsupported Enables migration to
-objemt-whitelist-dir-path= <value> Unsupported Modifies exclusively t
-ObjC Unsupported Treats source input fi
—offload-arch= <value> Supported Specifies CUDA offlos
-o <file> Supported Writes output to the
-parallel-jobs= <value> Supported Specifies the number
-pg Supported Enables mcount instr
-pipe Supported Asserts using pipes b
—precompile Supported Only precompiles the
-print-effective-triple Supported Prints the effective ta
-print-file-name= <file> Supported Prints the full library
-print-ivar-layout Unsupported Enables Objective-C |
-print-libgce-file-name Supported “Prints the library pa
-print-prog-name= <name> Supported Prints the full progras
-print-resource-dir Supported Prints the resource di
-print-search-dirs Supported Prints the paths used
-print-supported-cpus Supported Prints the supported
-print-target-triple Supported Prints the normalized
-print-targets Supported Prints the registered f
-pthread Supported Supports POSIX thre
—ptxas-path= <value> Unsupported Specifies the path to |
-P Supported Disables linemarker o
-Qn Supported Prohibits emitting me
-Qunused-arguments Supported Prohibits emitting wa
-Qy Supported Emits metadata cont:
-relocatable-pch Supported Allows to build a relo
-rewrite-legacy-objc Unsupported Rewrites Legacy Obje
-rewrite-objc Unsupported Rewrites Objective-C
—rocm-device-lib-path= <value> Supported Specifies ROCm devic
—rocm-path= <value> Supported Specifies ROCm insta
-Rpass-analysis= <value> Supported Reports transformatic
-Rpass-missed= <value> Supported Reports missed transf
-Rpass= <value> Supported Reports transformatic
-rtlib= <value> Unsupported Specifies the compiler
-R <remark> Unsupported Enables the specified
-save-stats= <value> Supported Saves llvm statistics
-save-stats Supported Saves llvm statistics
-save-temps= <value> Supported Saves intermediate co
-save-temps Supported Saves intermediate co
-serialize-diagnostics= <value> Supported Serializes compiler diz
-shared-libsan Unsupported Dynamically links the
-static-flang-libs Supported Asserts linking using
-static-libsan Unsupported Statically links the sa
-static-openmp Supported Asserts using the stat
-std= <value> Supported Specifies the language
-stdlib++isystem <directory> Supported Specifies the director;
-stdlib= <value> Supported Specifies the C++ stz
-sycl-std= <value> Unsupported Specifies the SYCL la
—system-header-prefix= <prefix> Supported Assumes all #include

22.2. Compiler Reference Guide

295

ROCm Documentation, Release 5.7.1

Option Support Status Description

-S Supported Runs only preprocess
—target= <value> Supported Generates code for th
-Thss <addr> Supported Sets the starting add:
-Tdata <addr> Supported Sets the starting addz
-time Supported Times individual com
-traditional-cpp Unsupported Enables some traditio
-trigraphs Supported Processes trigraph sec
-Ttext <addr> Supported Sets starting address
-T \ <script\> Unsupported Specifies the given. \
-undef Supported undefs all system defi
-unwindlib= <value> Supported Specifies the unwind |
-U <macro> Supported Undefines the given <
—verify-debug-info Supported Verifies the binary rej
-verify-pch Unsupported Loads and verifies if &
—version Supported Prints version inform:
-V Supported Shows commands to |
-Wa, <arg> Supported Passes the comma-sej
-Wdeprecated Supported Enables warnings for
-W1, <arg> Supported Passes comma-separa
-working-directory <value> Supported Resolves file paths rel
-Wp, <arg> Supported Passes comma-separa
-W <warning> Supported Enables the specified
-W Supported Suppresses all warnin
-Xanalyzer <arg> Supported Passes <arg> to the
-Xarch__device <arg> Supported Passes <arg> to the |
-Xarch_ host <arg> Supported Passes <arg> to the |
-Xassembler <arg> Supported Passes <arg> to the
-Xclang <arg> Supported Passes <arg> to the .
-Xcuda-fatbinary <arg> Supported Passes <arg> to fatb
-Xcuda-ptxas <arg> Supported Passes <arg> to the
-Xlinker <arg> Supported Passes <arg> to the |
-Xopenmp-target= <triple> <arg> Supported Passes <arg> to the
-Xopenmp-target <arg> Supported Passes <arg> to the
-Xpreprocessor <arg> Supported Passes <arg> to the
-x <language> Supported Assumes subsequent i
-z <arg> Supported Passes -z <arg> to tl

296 Chapter 22. Compilers and Tools

CHAPTER

TWENTYTHREE

MANAGEMENT TOOLS

AMD SMI The AMD System Management Interface Library, or AMD SMI library, is a C library for Linux
that provides a user space interface for applications to monitor and control AMD devices.

¢ Documentation
e GitHub
e Examples

ROCm SMI LIB This tool acts as a command line interface for manipulating and monitoring the AMD
GPU kernel, and is intended to replace and deprecate the existing rocm_ smi.py CLI tool. It uses ctypes to
call the rocm_smi lib APIL.

e Documentation
e GitHub
e Examples

ROCm Data Center Tool The ROCm™ Data Center Tool simplifies the administration and addresses key
infrastructure challenges in AMD GPUs in cluster and data center environments.

o GitHub
e Changelog

o Examples

297

https://rocm.docs.amd.com/projects/amdsmi/en/latest/index.html
https://rocm.docs.amd.com/projects/amdsmi/en/latest/index.html
https://github.com/RadeonOpenCompute/amdsmi
https://github.com/amd/go_amd_smi#example
https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/index.html
https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/index.html
https://github.com/RadeonOpenCompute/rocm_smi_lib
https://github.com/RadeonOpenCompute/rocm_smi_lib/tree/master/python_smi_tools
https://rocm.docs.amd.com/projects/rdc/en/latest/index.html
https://github.com/RadeonOpenCompute/rdc
https://github.com/RadeonOpenCompute/rdc/blob/master/CHANGELOG.md
https://github.com/RadeonOpenCompute/rdc/tree/master/example

ROCm Documentation, Release 5.7.1

298 Chapter 23. Management Tools

CHAPTER

TWENTYFOUR

VALIDATION TOOLS

RVS The ROCm Validation Suite is a system administrator’s and cluster manager’s tool for detecting
and troubleshooting common problems affecting AMD GPU(s) running in a high-performance computing
environment, enabled using the ROCm software stack on a compatible platform.

e Documentation
e GitHub
e Changelog

TransferBench TransferBench is a simple utility capable of benchmarking simultaneous transfers between
user-specified devices (CPUs/GPUs).

e Documentation
e GitHub
e Changelog

o Examples

299

https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/index.html
https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/latest/index.html
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/master/CHANGELOG.md
https://rocm.docs.amd.com/projects/TransferBench/en/latest/index.html
https://rocm.docs.amd.com/projects/TransferBench/en/latest/index.html
https://github.com/ROCmSoftwarePlatform/TransferBench/
https://github.com/ROCmSoftwarePlatform/TransferBench/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/TransferBench/en/latest/examples/index.html

ROCm Documentation, Release 5.7.1

300 Chapter 24. Validation Tools

CHAPTER

TWENTYFIVE

ALL EXPLANATION MATERIAL

Compiler Nomencalture ROCm ships multiple compilers of varying origins and purposes. This article
disambiguates compiler naming used throughout the documentation.

Using CMake ROCm components ship with 1st party CMake support. This article details
how that support works and how to use it.

Linux Folder Structure Reorganization ROCm™ packages have adopted the Linux foundation
file system hierarchy standard to ensure ROCm components follow open source conventions for Linux-based
distributions.

GPU Isolation Techniques Restricting the access of applications to a subset of GPUs, aka
isolating GPUs allows users to hide GPU resources from programs.

GPU Architectures AMD documentation around architectural details from both the CDNA
and RDNA product lines.

301

ROCm Documentation, Release 5.7.1

302 Chapter 25. All Explanation Material

CHAPTER

TWENTYSIX

ROCM COMPILERS DISAMBIGUATION

ROCm ships multiple compilers of varying origins and purposes. This article disambiguates compiler naming
used throughout the documentation.

26.1 Compiler Terms

Term | Description

amd- | Clang/LLVM-based compiler that is part of rocm-llvin package. The source code is available at
clang-+-https://github.com/RadeonOpenCompute/llvm-project.

AOC(Closed-source clang-based compiler that includes additional CPU optimizations. Offered as part
of ROCm via the rocm-llvm-alt package. See for details, https://developer.amd.com/amd-aocc/.
HIP- | Informal term for the amdclang++ compiler

Clang
HIP- | Tools including hipify-clang and hipify-perl, used to automatically translate CUDA source code
ify into portable HIP C++. The source code is available at https://github.com/ROCm-Developer-
Tools/HIPIFY

hipcc | HIP compiler driver. A utility that invokes clang or nvcc depending on the target and passes
the appropriate include and library options for the target compiler and HIP infrastructure. The
source code is available at https://github.com/ROCm-Developer-Tools/HIPCC.

ROCI @ hng/LLVM-based compiler. ROCmCC in itself is not a binary but refers to the overall compiler.

303

ROCm Documentation, Release 5.7.1

304 Chapter 26. ROCm Compilers Disambiguation

CHAPTER

TWENTYSEVEN

USING CMAKE

Most components in ROCm support CMake. Projects depending on header-only or library components
typically require CMake 3.5 or higher whereas those wanting to make use of CMake’s HIP language support
will require CMake 3.21 or higher.

27.1 Finding Dependencies

Note: For a complete reference on how to deal with dependencies in CMake, refer to the CMake docs on
find_package and the Using Dependencies Guide to get an overview of CMake’s related facilities.

In short, CMake supports finding dependencies in two ways:

e In Module mode, it consults a file Find<PackageName>.cmake which tries to find the component in
typical install locations and layouts. CMake ships a few dozen such scripts, but users and projects may
ship them as well.

e In Config mode, it locates a file named <packagename>-config.cmake or <PackageName>Config.
cmake which describes the installed component in all regards needed to consume it.

ROCm predominantly relies on Config mode, one notable exception being the Module driving the com-
pilation of HIP programs on Nvidia runtimes. As such, when dependencies are not found in standard
system locations, one either has to instruct CMake to search for package config files in additional folders
using the CMAKE_PREFIX PATH variable (a semi-colon separated list of filesystem paths), or using
<PackageName>_ROQT variable on a project-specific basis.

There are nearly a dozen ways to set these variables. One may be more convenient over the other depending
on your workflow. Conceptually the simplest is adding it to your CMake configuration command on the
command-line via -D CMAKE_PREFIX_PATH=.... . AMD packaged ROCm installs can typically be
added to the config file search paths such as:

o Windows: -D CMAKE_PREFIX_PATH=${env:HIP_PATH}
o Linux: -D CMAKE_PREFIX_PATH=/opt/rocm

ROCm provides the respective config-file packages, and this enables find_ package to be used directly. ROCm
does not require any Find module as the config-file packages are shipped with the upstream projects, such
as rocPRIM and other ROCm libraries.

For a complete guide on where and how ROCm may be installed on a system, refer to the installation guides
in these docs (Linux).

305

https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/guide/using-dependencies/index.html
../deploy/linux/index.html

ROCm Documentation, Release 5.7.1

27.2 Using HIP in CMake

ROCm componenents providing a C/C++ interface support being consumed using any C/C++ toolchain
that CMake knows how to drive. ROCm also supports CMake’s HIP language features, allowing users to
program using the HIP single-source programming model. When a program (or translation-unit) uses the
HIP API without compiling any GPU device code, HIP can be treated in CMake as a simple C/C++ library.

27.2.1 Using the HIP single-source programming model

Source code written in the HIP dialect of C++ typically uses the .hip extension. When the HIP CMake
language is enabled, it will automatically associate such source files with the HIP toolchain being used.

cmake minimum_ required(VERSION 3.21) # HIP language support requires 3.21
cmake_ policy(VERSION 3.21.3...3.27)

project(MyProj LANGUAGES HIP)

add__executable(MyApp Main.hip)

Should you have existing CUDA code that is from the source compatible subset of HIP, you can tell CMake
that despite their .cu extension, they’re HIP sources. Do note that this mostly facilitates compiling kernel
code-only source files, as host-side CUDA API won’t compile in this fashion.

add_ library(MyLib MyLib.cu)
set__source_ files_ properties(MyLib.cu PROPERTIES LANGUAGE HIP)

CMake itself only hosts part of the HIP language support, such as defining HIP-specific properties, etc.
while the other half ships with the HIP implementation, such as ROCm. CMake will search for a file
hip-lang-config.cmake describing how the the properties defined by CMake translate to toolchain invo-
cations. If one installs ROCm using non-standard methods or layouts and CMake can’t locate this
file or detect parts of the SDK, there’s a catch-all, last resort variable consulted locating this file, -D
CMAKE HIP COMPILER ROCM_ ROOT:PATH= which should be set the root of the ROCm installa-

tion.

If the wuser doesn’t provide a semi-colon delimited list of device architectures via
CMAKE_HIP_ARCHITECTURES, CMake will select some sensible default. It is advised though
that if a user knows what devices they wish to target, then set this variable explicitly.

27.2.2 Consuming ROCm C/C++ Libraries

Libraries such as rocBLAS, rocFFT, MIOpen, etc. behave as C/C++ libraries. Illustrated in the example
below is a C++ application using MIOpen from CMake. It calls find__package(miopen), which provides the
MIOpen imported target. This can be linked with target_link libraries

cmake_minimum_ required(VERSION 3.5) # find package(miopen) requires 3.5
cmake_policy(VERSION 3.5...3.27)

project(MyProj LANGUAGES CXX)

find__package(miopen)

add_ library(MyLib ...)

target_link_libraries(MyLib PUBLIC MIOpen)

Note: Most libraries are designed as host-only API, so using a GPU device compiler is not necessary for
downstream projects unless they use GPU device code.

306 Chapter 27. Using CMake

ROCm Documentation, Release 5.7.1

27.2.3 Consuming the HIP API in C++ code

Use the HIP API without compiling the GPU device code. As there is no GPU code, any C or C++ compiler
can be used. The find_ package(hip) provides the hip::host imported target to use HIP in this context.

cmake__minimum_ required(VERSION 3.5) # find package(hip) requires 3.5
cmake_policy(VERSION 3.5...3.27)

project(MyProj LANGUAGES CXX)

find__package(hip REQUIRED)

add__executable(MyApp ...)

target_link_ libraries(MyApp PRIVATE hip::host)

27.2.4 Compiling device code in C++ language mode

Attention: The workflow detailed here is considered legacy and is shown for understanding’s sake. It
pre-dates the existence of HIP language support in CMake. If source code has HIP device code in it, it is
a HIP source file and should be compiled as such. Only resort to the method below if your HIP-enabled
CMake codepath can’t mandate CMake version 3.21.

If code uses the HIP API and compiles GPU device code, it requires using a device compiler. The compiler
for CMake can be set using either the CMAKE_C__COMPILER and CMAKE_CXX_ COMPILER variable
or using the CC and CXX environment variables. This can be set when configuring CMake or put into a
CMake toolchain file. The device compiler must be set to a compiler that supports AMD GPU targets,
which is usually Clang.

The find_package(hip) provides the hip::device imported target to add all the flags necessary for device
compilation.

cmake__minimum_ required(VERSION 3.8) # cxx_std_ 11 requires 3.8
cmake_policy(VERSION 3.8...3.27)

project(MyProj LANGUAGES CXX)

find__package(hip REQUIRED)

add_ library(MyLib ...)

target_ link libraries(MyLib PRIVATE hip::device)

target__compile_ features(MyLib PRIVATE cxx_std_11)

Note: Compiling for the GPU device requires at least C++11.

This project can then be configured with for eg.
o Windows: cmake -D CMAKE CXX COMPILER:PATH=${env:HIP_PATH}\bin\clang++.exe
o Linux: cmake -D CMAKE_ CXX_ COMPILER:PATH=/opt/rocm/bin/amdclang++

Which use the device compiler provided from the binary packages of ROCm HIP SDK and repo.radeon.com
respectively.

When using the CXX language support to compile HIP device code, selecting the target GPU architectures
is done via setting the GPU_TARGETS variable. CMAKE_HIP_ARCHITECTURES only exists when
the HIP language is enabled. By default, this is set to some subset of the currently supported architectures
of AMD ROCm. It can be set to eg. -D GPU_TARGETS="gfx1032;gfx1035".

27.2. Using HIP in CMake 307

https://www.amd.com/en/developer/rocm-hub.html
https://repo.radeon.com

ROCm Documentation, Release 5.7.1

27.2.5 ROCm CMake Packages

Com- Pack- | Targets
ponent age

HIP hip hip::host, hip::device
rocPRIM| rocprim roc::rocprim
roc- roc- roc::rocthrust

Thrust thrust
hipCUB | hipcub| hip::hipcub
ro- ro- roc::rocrand
cRAND | crand
rocBLAS| rocblas| roc::rocblas

roc- roc- roc::rocsolver
SOLVER| solver

hip- hip- roc::hipblas
BLAS blas

rocFFT | rocfft | roc:rocfft
hipFFT | hipfft | hip::hipfft
roc- roc- rOC::TOCSparse
SPARSE| sparse
hipSPARSHKipsparseoc::hipsparse

rocA- ro- roc::rocalution
LU- calu-
TION tion

RCCL recl reel

MIOpen | mioperq MIOpen

MI- mi- migraphx::migraphx, migraphx::migraphx_ c¢, migraphx::migraphx_cpu, mi-
GraphX | graphx| graphx::migraphx_gpu, migraphx::migraphx_onnx, migraphx::migraphx_ tf

27.3 Using CMake Presets

CMake command-lines depending on how specific users like to be when compiling code can grow to un-
wieldy lengths. This is the primary reason why projects tend to bake script snippets into their build
definitions controlling compiler warning levels, changing CMake defaults (CMAKE_BUILD_TYPE or
BUILD_SHARED_ LIBS just to name a few) and all sorts anti-patterns, all in the name of convenience.

Load on the command-line interface (CLI) starts immediately by selecting a toolchain, the set of utilities
used to compile programs. To ease some of the toolchain related pains, CMake does consult the CC and
CXX environmental variables when setting a default CMAKE__ C[XX]_COMPILER respectively, but that
is just the tip of the iceberg. There’s a fair number of variables related to just the toolchain itself (typically
supplied using toolchain files), and then we still haven’t talked about user preference or project-specific
options.

IDEs supporting CMake (Visual Studio, Visual Studio Code, CLion, etc.) all came up with their own way
to register command-line fragments of different purpose in a setup’n’forget fashion for quick assembly using
graphical front-ends. This is all nice, but configurations aren’t portable, nor can they be reused in Continuous
Intergration (CI) pipelines. CMake has condensed existing practice into a portable JSON format that works
in all IDEs and can be invoked from any command-line. This is CMake Presets .

There are two types of preset files: one supplied by the project, called CMakePresets.json which is meant
to be committed to version control, typically used to drive CI; and one meant for the user to provide,
called CMakeUserPresets.json, typically used to house user preference and adapting the build to the user’s

308 Chapter 27. Using CMake

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

ROCm Documentation, Release 5.7.1

environment. These JSON files are allowed to include other JSON files and the user presets always implicitly
includes the non-user variant.

27.3.1 Using HIP with presets

Following is an example CMakeUserPresets.json file which actually compiles the amd/rocm-examples suite
of sample applications on a typical ROCm installation:

{
"version”: 3,
’cmakeMinimumRequired”: {
"major”: 3,
"minor”: 21,
"patch”: 0
2
“configurePresets”: |
{
“name”: "layout”,
“hidden”: true,
"binaryDir”: ”${sourceDir}/build/${presetName}”,
“installDir”: "${sourceDir}/install/${presetName}”
}7
{
“name”: "generator-ninja-multi-config”,
“hidden”: true,
7generator”: "Ninja Multi-Config”

}7
{

“name”: "toolchain-makefiles-c/c+-+-amdclang”,

“hidden”: true,

’cacheVariables”: {
"CMAKE_C_COMPILER”: ”/opt/rocm/bin/amdclang”,
"CMAKE CXX_ COMPILER”: ”/opt/rocm/bin/amdclang++",
"CMAKE HIP COMPILER”: ”/opt/rocm/bin/amdclang++"

}
}7
{

“name”: ”clang-strict-iso-high-warn”,

“hidden”: true,

”cacheVariables”: {
"CMAKE__C_FLAGS”: ”-Wall -Wextra -pedantic”,
"CMAKE_CXX_ FLAGS”: ”-Wall -Wextra -pedantic”,
"CMAKE_HIP_FLAGS”: ”-Wall -Wextra -pedantic”

}

}7
{
“name”: "ninja-mc-rocm”,
”displayName”: ”Ninja Multi-Config ROCm”,
“inherits”: |
"layout”,
”generator-ninja-multi-config”,
"toolchain-makefiles-c/c+-+-amdclang”,
”clang-strict-iso-high-warn”

(continues on next page)

27.3. Using CMake Presets 309

https://github.com/amd/rocm-examples

ROCm Documentation, Release 5.7.1

(continued from previous page)

"buildPresets”: |
“name”: "ninja-mc-rocm-debug”,
9 13 ., ”
displayName”: "Debug”,
?configuration”: "Debug”,
”configurePreset”: "ninja-mc-rocm”

e~

“name”: "ninja-mec-rocm-release”,
”displayName”: "Release”,
?configuration”: "Release”,
”configurePreset”: "ninja-mc-rocm”

e

“name”: "ninja-mc-rocm-debug-verbose”,
’displayName”: "Debug (verbose)”,
?configuration”: "Debug”,
?configurePreset”: “ninja-mc-rocm”,
7verbose”: true

“name”: "ninja-mec-rocm-release-verbose”,
"displayName”: "Release (verbose)”,
”configuration”: "Release”,
”configurePreset”: “ninja-mc-rocm”,
“verbose”: true
}
],
“testPresets”: [
{
“name”: "ninja-mc-rocm-debug”,
”displayName”: "Debug”,
”configuration”: "Debug”,
”configurePreset”: "ninja-mc-rocm”,
Yexecution”: {
7jobs”: 0
}
b
{

“name”: "ninja-mc-rocm-release”,
”displayName”: "Release”,
”configuration”: "Release”,
”configurePreset”: "ninja-mc-rocm”,
Yexecution”: {
7jobs”: 0
}
}
]
}

Note: Getting presets to work reliably on Windows requires some CMake improvements and/or support
from compiler vendors. (Refer to Add support to the Visual Studio generators and Sourcing environment
scripts .)

310 Chapter 27. Using CMake

https://gitlab.kitware.com/cmake/cmake/-/issues/24245
https://gitlab.kitware.com/cmake/cmake/-/issues/21619
https://gitlab.kitware.com/cmake/cmake/-/issues/21619

CHAPTER

TWENTYEIGHT

ROCM FHS REORGANIZATION

28.1 Introduction

The ROCm platform has adopted the Linux foundation Filesystem Hierarchy Standard (FHS) https:
/ /refspecs linuxfoundation.org/FHS 3.0/fhs/index.html in order to to ensure ROCm is consistent with stan-
dard open source conventions. The following sections specify how current and future releases of ROCm adhere
to FHS, how the previous ROCm filesystem is supported, and how improved versioning specifications are
applied to ROCm.

28.2 Adopting the Linux foundation Filesystem Hierarchy Standard (FHS)

In order to standardize ROCm directory structure and directory content layout ROCm has adopted the
FHS, adhering to open source conventions for Linux-based distribution. FHS ensures internal consistency
within the ROCm stack, as well as external consistency with other systems and distributions. The ROCm
proposed file structure is outlined below:

/opt/rocm-<ver>
| -- bin
| -- all public binaries
| -- lib
| -- lib<soname>.so->lib<soname>.so.major->lib<soname>>.so.major.minor.patch
(public libaries to link with applications)
| -- <component>
| -- architecture dependent libraries and binaries used internally by components
| -- cmake
| -- <component>
| --<component>-config.cmake
| -- libexec
| -- <component>
| -- non ISA /architecture independent executables used internally by components
| -- include
| -- <component>
| -- public header files
| -- share
| -- html
| -- <component>
| -- html documentation
| -- info
| -- <component>
| -- info files
| -- man

(continues on next page)

311

https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html

ROCm Documentation, Release 5.7.1

(continued from previous page)

| - <component>
| -- man pages
| -- doc
| -- <component>
| -- license files
| -- <component>
| -- samples
| -- architecture independent misc files

28.3 Changes From Earlier ROCm Versions

The following table provides a brief overview of the new ROCm FHS layout, compared to the layout of
earlier ROCm versions. Note that /opt/ is used to denote the default rocm-installation-path and should be
replaced in case of a non-standard installation location of the ROCm distribution.

| New ROCm Layout | Previous ROCm Layout |
| |
| /opt/rocm-<ver> | /opt/rocm-<ver> \
| |--bin | | --bin |

| |-1lb | |--1lb |

| | -- cmake | | - include |

| |- libexec | |- <component_1> |
| | - include | | -- bin |

| | -- <component 1> | | -- cmake |
| | -- share | | -- doc |

| | -- html | | -- lib |

| | -- info | | -- include |

| | -- man | | -- samples |

| | - doc | |-- <component n> |
| | -- <component_1> | | -- bin |

| | -- samples | | - cmake |

| |~ | |-doc |

| | -- <component n> | | -- lib |

| | -- samples | | -- include |

| | - .. | | -- samples |

|

28.4 ROCm FHS Reorganization: Backward Compatibility

The FHS file organization for ROCm was first introduced in the release of ROCm 5.2 . Backward compat-
ibility was implemented to make sure users could still run their ROCm applications while transitioning to
the new FHS. ROCm has moved header files and libraries to their new locations as indicated in the above
structure, and included symbolic-links and wrapper header files in their old location for backward compati-
bility. The following sections detail ROCm backward compatibility implementation for wrapper header files,
executable files, library files and CMake config files.

312 Chapter 28. ROCm FHS Reorganization

ROCm Documentation, Release 5.7.1

28.4.1 Wrapper Header Files

Wrapper header files are placed in the old location (/opt/rocm-<ver>/<component>/include) with a
warning message to include files from the new location (/opt/rocm-<ver>/include) as shown in the example
below.

#pragma message ”This file is deprecated. Use file from include path /opt/rocm-ver/include/ and prefix with hip.”
#include <hip/hip_ runtime.h>

e Starting at ROCm 5.2 release, the deprecation for backward compatibility wrapper header files is:
#pragma message announcing #warning.

o Starting from ROCm 6.0 (tentatively) backward compatibility for wrapper header files will be removed,
and the #pragma message will be announcing #error.

28.4.2 Executable Files

Executable files are available in the /opt/rocm-<ver>/bin folder. For backward compatibility, the old library
location (/opt/rocm-<ver>/<component>/bin) has a soft link to the library at the new location. Soft links
will be removed in a future release, tentatively ROCm v6.0.

$ 1s -1 /opt/rocm/hip/bin/
lrwxrwxrwx 1 root root 24 Jan 1 23:32 hipcc -> ../../bin/hipcc

28.4.3 Library Files

Library files are available in the /opt/rocm-<ver>/lib folder. For backward compatibility, the old library
location (/opt/rocm-<ver>/<component>/lib) has a soft link to the library at the new location. Soft links
will be removed in a future release, tentatively ROCm v6.0.

$ 1s -1 /opt/rocm/hip/lib/
drwxr-xr-x 4 root root 4096 Jan 1 10:45 cmake
Irwxrwxrwx 1 root root 24 Jan 1 23:32 libamdhip64.so -> ../../lib/libamdhip64.so

28.4.4 CMake Config Files

All CMake configuration files are available in the /opt/rocm-<ver>/lib/cmake/<component> folder. For
backward compatibility, the old CMake locations (/opt/rocm-<ver>/<component>/lib/cmake) consist of
a soft link to the new CMake config. Soft links will be removed in a future release, tentatively ROCm v6.0.

$ Is -1 /opt/rocm/hip/lib/cmake /hip/
Irwxrwxrwx 1 root root 42 Jan 1 23:32 hip-config.cmake -> ../../../../lib/cmake/hip/hip-config.cmake

28.4. ROCm FHS Reorganization: Backward Compatibility 313

ROCm Documentation, Release 5.7.1

28.5 Changes Required in Applications Using ROCm

Applications using ROCm are advised to use the new file paths. As the old files will be deprecated in a
future release. Applications have to make sure to include correct header file and use correct search paths.

1. #include<header_ file.h> needs to be changed to #include <component/header_ file.h>
For example: #include <hip.h> needs to change to #include <hip/hip.h>
2. Any variable in CMake or Makefiles pointing to component folder needs to changed.

For example: VAR1=/opt/rocm/hip needs to be changed to VAR1=/opt/rocm VAR2=/opt/rocm/hsa
needs to be changed to VAR2=/opt/rocm

3. Any reference to /opt/rocm/<component>/bin or /opt/rocm/<component>/lib needs to be changed
to /opt/rocm/bin and /opt/rocm/lib/, respectively.

28.6 Changes in Versioning Specifications

In order to better manage ROCm dependencies specification and allow smoother releases of ROCm while
avoiding dependency conflicts, the ROCm platform shall adhere to the following scheme when numbering
and incrementing ROCm files versions:

rocm-<ver>, where <ver> = <x.y.z>
x.y.z denote: MAJOR.MINOR.PATCH
z: PATCH - increment z when implementing backward compatible bug fixes.

y: MINOR - increment y when implementing minor changes that add functionality but are still backward
compatible.

x: MAJOR - increment x when implementing major changes that are not backward compatible.

314 Chapter 28. ROCm FHS Reorganization

CHAPTER

TWENTYNINE

GPU ISOLATION TECHNIQUES

Restricting the access of applications to a subset of GPUs, aka isolating GPUs allows users to hide GPU
resources from programs. The programs by default will only use the “exposed” GPUs ignoring other (hidden)
GPUs in the system.

There are multiple ways to achieve isolation of GPUs in the ROCm software stack, differing in which
applications they apply to and the security they provide. This page serves as an overview of the techniques.

29.1 Environment Variables

The runtimes in the ROCm software stack read these environment variables to select the exposed or default
device to present to applications using them.

Environment variables shouldn’t be used for isolating untrusted applications, as an application can reset
them before initializing the runtime.

29.1.1 ROCR_VISIBLE DEVICES

A list of device indices or UUID (universally unique identifier)s that will be exposed to applications.

Runtime : ROCm Platform Runtime. Applies to all applications using the user mode ROCm software stack.

Listing 29.1: Example to expose the 1. device and a device based
on UUID.

export ROCR_VISIBLE DEVICES="0,GPU-DEADBEEFDEADBEEF”

29.1.2 GPU_DEVICE_ORDINAL

Devices indices exposed to OpenCL and HIP applications.

Runtime : ROCm Common Language Runtime (ROCclr). Applies to applications and runtimes using the
ROCclIr abstraction layer including HIP and OpenCL applications.

Listing 29.2: Example to expose the 1. and 3. device in the system.

export GPU_DEVICE_ORDINAL="0,2"

315

ROCm Documentation, Release 5.7.1

29.1.3 HIP_VISIBLE DEVICES

Device indices exposed to HIP applications.

Runtime : HIP Runtime. Applies only to applications using HIP on the AMD platform.

Listing 29.3: Example to expose the 1. and 3. devices in the
system.

export HIP_ VISIBLE_DEVICES="0,2”

29.1.4 CUDA_VISIBLE DEVICES

Provided for CUDA compatibility, has the same effect as HIP_ VISIBLE_DEVICES on the AMD platform.

Runtime : HIP or CUDA Runtime. Applies to HIP applications on the AMD or NVIDIA platform and
CUDA applications.

29.1.5 OMP_DEFAULT DEVICE

Default device used for OpenMP target offloading.
Runtime : OpenMP Runtime. Applies only to applications using OpenMP offloading.

Listing 29.4: Example on setting the default device to the third
device.

export OMP__DEFAULT DEVICE="2"

29.2 Docker

Docker uses Linux kernel namespaces to provide isolated environments for applications. This isolation applies
to most devices by default, including GPUs. To access them in containers explicit access must be granted,
please see Accessing GPUs in containers for details. Specifically refer to Restricting a container to a subset
of the GPUs on exposing just a subset of all GPUs.

Docker isolation is more secure than environment variables, and applies to all programs that use the amdgpu
kernel module interfaces. Even programs that don’t use the ROCm runtime, like graphics applications using
OpenGL or Vulkan, can only access the GPUs exposed to the container.

29.3 GPU Passthrough to Virtual Machines

Virtual machines achieve the highest level of isolation, because even the kernel of the virtual machine is
isolated from the host. Devices physically installed in the host system can be passed to the virtual machine
using PCle passthrough. This allows for using the GPU with a different operating systems like a Windows
guest from a Linux host.

Setting up PCle passthrough is specific to the hypervisor used. ROCm officially supports VMware ESXi for
select GPUs.

316 Chapter 29. GPU Isolation Techniques

https://www.vmware.com/products/esxi-and-esx.html

CHAPTER

THIRTY

GPU ARCHITECTURES

30.1 Architecture Guides

AMD Instinct MI200 Review hardware aspects of the AMD Instinct™ MI250 accelerators and the CDNA™
2 architecture that is the foundation of these GPUs.

o Instruction Set Architecture
e Whitepaper
e Guide

AMD Instinct MI100 Review hardware aspects of the AMD Instinct™ MI100 accelerators and the CDNA™
1 architecture that is the foundation of these GPUs.

e Instruction Set Architecture
o Whitepaper
e Guide

30.2 ISA Documentation

o AMD Instinct MI200/CDNAZ2 Instruction Set Architecture
o AMD Instinct MI100/CDNAT1 Instruction Set Architecture
o AMD Instinct MI50/Vega 7nm Instruction Set Architecture
o AMD Instinct MI25/Vega Instruction Set Architecture

o AMD RDNAS3 Instruction Set Architecture

o« AMD RDNA2 Instruction Set Architecture

o AMD RDNA Instruction Set Architecture

o AMD GCN3 Instruction Set Architecture

317

https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
https://www.amd.com/system/files/TechDocs/vega-7nm-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/vega-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/rdna-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/gcn3-instruction-set-architecture.pdf

ROCm Documentation, Release 5.7.1

30.3 White Papers

e AMD CDNA™ 2 Architecture White Paper
e AMD CDNA Architecture White Paper

e AMD Vega Architecture White Paper
AMD RDNA Architecture White Paper

30.4 AMD Instinct Hardware

This chapter briefly reviews hardware aspects of the AMD Instinct MI250 accelerators and the CDNA™ 2
architecture that is the foundation of these GPUs.

30.4.1 AMD CDNA 2 Micro-architecture

The micro-architecture of the AMD Instinct MI250 accelerators is based on the AMD CDNA 2 architecture
that targets compute applications such as HPC, artificial intelligence (AI), and Machine Learning (ML) and
that run on everything from individual servers to the world’s largest exascale supercomputers. The overall
system architecture is designed for extreme scalability and compute performance.

Fig. 30.1 shows the components of a single Graphics Compute Die (GCD) of the CDNA 2 architecture. On
the top and the bottom are AMD Infinity Fabric™ interfaces and their physical links that are used to connect
the GPU die to the other system-level components of the node (see also Section 2.2). Both interfaces can
drive four AMD Infinity Fabric links. One of the AMD Infinity Fabric links of the controller at the bottom
can be configured as a PCle link. Each of the AMD Infinity Fabric links between GPUs can run at up to
25 GT/sec, which correlates to a peak transfer bandwidth of 50 GB/sec for a 16-wide link (two bytes per
transaction). Section 2.2 has more details on the number of AMD Infinity Fabric links and the resulting
transfer rates between the system-level components.

To the left and the right are memory controllers that attach the High Bandwidth Memory (HBM) modules
to the GCD. AMD Instinct MI250 GPUs use HBM2e, which offers a peak memory bandwidth of 1.6 TB/sec
per GCD.

The execution units of the GPU are depicted in Fig. 30.1 as Compute Units (CU). The MI250 GCD has 104
active CUs. Each compute unit is further subdivided into four SIMD units that process SIMD instructions
of 16 data elements per instruction (for the FP64 data type). This enables the CU to process 64 work items
(a so-called “wavefront”) at a peak clock frequency of 1.7 GHz. Therefore, the theoretical maximum FP64
peak performance per GCD is 45.3 TFLOPS for vector instructions. The MI250 compute units also provide
specialized execution units (also called matrix cores), which are geared toward executing matrix operations
like matrix-matrix multiplications. For FP64, the peak performance of these units amounts to 90.5 TFLOPS.

318 Chapter 30. GPU Architectures

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf

ROCm Documentation, Release 5.7.1

Fig. 30.1: Figure 1: Structure of a single GCD in the AMD Instinct MI250 accelerator.

30.4. AMD Instinct Hardware 319

ROCm Documentation, Release 5.7.1

Table 30.1: Peak-performance capabilities of the MI250 OAM for
different data types.

Computation and Data Type | FLOPS/CLOCK/CU | Peak TFLOPS
Matrix FP64 256 90.5

Vector FP64 128 45.3

Matrix FP32 256 90.5

Packed FP32 256 90.5

Vector FP32 128 45.3

Matrix FP16 1024 362.1

Matrix BF16 1024 362.1

Matrix INTS 1024 362.1

Table 30.1 summarizes the aggregated peak performance of the AMD Instinct MI250 OCP Open Accelerator
Modules (OAM, OCP is short for Open Compute Platform) and its two GCDs for different data types
and execution units. The middle column lists the peak performance (number of data elements processed
in a single instruction) of a single compute unit if a SIMD (or matrix) instruction is being retired in each
clock cycle. The third column lists the theoretical peak performance of the OAM module. The theoretical
aggregated peak memory bandwidth of the GPU is 3.2 TB/sec (1.6 TB/sec per GCD).

Fig. 30.2: Dual-GCD architecture of the AMD Instinct MI250 accelerators.

Fig. 30.2 shows the block diagram of an OAM package that consists of two GCDs, each of which constitutes
one GPU device in the system. The two GCDs in the package are connected via four AMD Infinity Fabric
links running at a theoretical peak rate of 25 GT /sec, giving 200 GB/sec peak transfer bandwidth between
the two GCDs of an OAM, or a bidirectional peak transfer bandwidth of 400 GB/sec for the same.

320 Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

30.4.2 Node-level Architecture

Fig. 30.3 shows the node-level architecture of a system that is based on the AMD Instinct MI250 accelerator.
The MI250 OAMs attach to the host system via PCle Gen 4 x16 links (yellow lines). Each GCD maintains
its own PCle x16 link to the host part of the system. Depending on the server platform, the GCD can attach
to the AMD EPYC processor directly or via an optional PCle switch . Note that some platforms may offer
an x8 interface to the GCDs, which reduces the available host-to-GPU bandwidth.

PCle

XGMI

Fig. 30.3: Block diagram of AMD Instinct MI250 Accelerators with 3rd Generation AMD EPYC processor.

Fig. 30.3 shows the node-level architecture of a system with AMD EPYC processors in a dual-socket config-
uration and four AMD Instinct MI250 accelerators. The MI250 OAMs attach to the host processors system
via PCle Gen 4 x16 links (yellow lines). Depending on the system design, a PCle switch may exist to make
more PCle lanes available for additional components like network interfaces and/or storage devices. Each
GCD maintains its own PCle x16 link to the host part of the system or to the PCle switch. Please note, some

30.4. AMD Instinct Hardware 321

ROCm Documentation, Release 5.7.1

platforms may offer an x8 interface to the GCDs, which will reduce the available host-to-GPU bandwidth.

Between the OAMs and their respective GCDs, a peer-to-peer (P2P) network allows for direct data exchange
between the GPU dies via AMD Infinity Fabric links (black, green, and red lines). Each of these 16-wide links
connects to one of the two GPU dies in the MI250 OAM and operates at 25 GT/sec, which corresponds to a
theoretical peak transfer rate of 50 GB/sec per link (or 100 GB/sec bidirectional peak transfer bandwidth).
The GCD pairs 2 and 6 as well as GCDs 0 and 4 connect via two XGMI links, which is indicated by the
thicker red line in Fig. 30.3.

30.5 MI200 Performance Counters and Metrics

This document lists and describes the hardware performance counters and the derived metrics available on
the AMD Instinct™ MI200 GPU. All hardware performance monitors, and the derived performance metrics
are accessible via AMD ROCm™ Profiler tool.

30.5.1 MI200 Performance Counters List

Note: Preliminary validation of all MI200 performance counters is in progress. Those with “[*]” appended
to the names require further evaluation.

30.5.1.1 Graphics Register Bus Management (GRBM)

30.5.1.1.1 GRBM Counters

Hardware Counter | Unit Definition

grbm__count Cy- Free-running GPU clock
cles

grbm_ gui_active | Cy- GPU active cycles
cles

grbm_ cp_ busy Cy- Any of the CP (CPC/CPF) blocks are busy.
cles

grbm__spi_ busy Cy- Any of the Shader Processor Input (SPI) are busy in the shader engine(s).
cles

grbm_ ta_ busy Cy- Any of the Texture Addressing Unit (TA) are busy in the shader engine(s).
cles

grbm_ tc_ busy Cy- Any of the Texture Cache Blocks (TCP/TCI/TCA/TCC) are busy.
cles

grbm__cpc__busy Cy- The Command Processor - Compute (CPC) is busy.
cles

grbm_ cpf_busy Cy- The Command Processor - Fetcher (CPF) is busy.
cles

grbm__utcl2__busy | Cy- The Unified Translation Cache - Level 2 (UTCL2) block is busy.
cles

grbm_ ea_ busy Cy- The Efficiency Arbiter (EA) block is busy.
cles

322 Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

30.5.1.2 Command Processor (CP)

The command processor counters are further classified into fetcher and compute.

30.5.1.2.1 Command Processor - Fetcher (CPF)

30.5.1.2.1.1 CPF Counters

Hardware Counter Unit Definition

cpf_cmp_ utcll_stall_on_ translatignCy- One of the Compute UTCL1s is stalled waiting on trans-
cles lation.

cpf_cpf_stat_idle[x] Cy- CPF idle
cles

cpf_cpf stat_ stall Cy- CPF stall
cles

cpf_cpf_tciu_busy Cy- CPF TCIU interface busy
cles

cpf_cpf tciu_idle Cy- CPF TCIU interface idle
cles

cpf_cpt_tciu_stall[#] Cy- CPF TCIU interface is stalled waiting on free tags.
cles

30.5.1.2.2 Command Processor - Compute (CPC)

30.5.1.2.2.1 CPC Counters

Hardware Counter

Unit Definition

cpc_mel_busy_for packet_ decode

Cycles | CPC ME1 busy decoding packets

cpc_utcll_stall _on_ translation

Cycles | One of the UTCL1s is stalled waiting on translation

cpc_cpc_stat_busy

Cycles | CPC busy

cpc_cpe_stat_idle

Cycles | CPC idle

cpc__cpc__stat_ stall

Cycles | CPC stalled

cpc__cpc__tciu__busy

Cycles | CPC TCIU interface busy

cpc_cpe_tciu_idle

Cycles | CPC TCIU interface idle

cpc__cpe__utcl2iu__busy

Cycles | CPC UTCL2 interface busy

cpc__cpe_utel2iu_idle

Cycles | CPC UTCL2 interface idle

cpe_cpe_utcl2iu_stall[x]

Cycles | CPC UTCL2 interface stalled waiting

cpc_mel_dci0_spi_ busy

Cycles | CPC ME1 Processor busy

30.5. MI200 Performance Counters and Metrics 323

ROCm Documentation, Release 5.7.1

30.5.1.3 Shader Processor Input (SPI)

30.5.1.3.1 SPI Counters

Hardware Counter Unit Definition
spi__csn__busy Cycles Number of clocks with outstanding waves
spi__csn_window_ valid | Cycles Clock count enabled by perfcounter_start event

spi_ csn_num__threadgroup¥ork-

Total number of dispatched workgroups

groups
Spi_ csn_ wave Wave- Total number of dispatched wavefronts
fronts

spi_ra_req_no_ alloc Cycles Arb cycles with requests but no allocation (need to multiply this
value by 4)

spi_ra_req_no_ alloc_csn Cycles Arb cycles with CSn req and no CSn alloc (need to multiply this
value by 4)

spi_ra_res_stall csn Cycles Arb cycles with CSn req and no CSn fits (need to multiply this
value by 4)

spi_ra_tmp_stall csn[x]| Cycles Cycles where CSn wants to req but does not fit in temp space

spi_ra_ wave_simd_ full |[cSIMD-

Sum of SIMD where WAVE cannot take csn wave when not fits

cycles

spi_ra_vgpr simd_ full |csSI¥D- Sum of SIMD where VGPR cannot take csn wave when not fits
cycles

spi_ra_sgpr_simd_ full ¢sH[MD- Sum of SIMD where SGPR cannot take csn wave when not fits
cycles

spi_ra_lds cu_full csn| CUs Sum of CU where LDS cannot take csn wave when not fits

spi_ra_bar_cu_full csn|«CUs Sum of CU where BARRIER cannot take csn wave when not fits

spi_ra_ bulky cu_full c

>Iﬂ;>ﬂ]JS

Sum of CU where BULKY cannot take csn wave when not fits

spi_ra_tglim cu_full csnGycles

Cycles where csn wants to req but all CUs are at tg_ limit

spi_ra_wvlim_ cu_ full_ dsif¥lles

Number of clocks csn is stalled due to WAVE LIMIT

Spi__vwc_ csc_ wr Cycles Number of clocks to write CSC waves to VGPRs (need to multiply
this value by 4)
Spi__Swc_ csc_ wr Cycles Number of clocks to write CSC waves to SGPRs (need to multiply

this value by 4)

30.5.1.4 Compute Unit

The compute unit counters are further classified into instruction mix, MFMA operation counters, level
counters, wavefront counters, wavefront cycle counters, local data share counters, and others.

30.5.1.4.1 Instruction Mix

Hardware Counter Unit | Definition

Sq__insts Instr | Number of instructions issued

sq_insts_valu Instr | Number of VALU instructions issued, including MFMA
sq_insts_valu_add_f16 Instr | Number of VALU F16 Add instructions issued
sq_insts_valu_mul_ f16 Instr | Number of VALU F16 Multiply instructions issued
sq_insts_valu_fma_f16 Instr | Number of VALU F16 FMA instructions issued
sq_insts_valu_ trans_f16 Instr | Number of VALU F16 Transcendental instructions issued

324

Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

Table 30.2 — continued from previous page

Hardware Counter Unit | Definition

sq_insts_valu_add_ 32 Instr | Number of VALU F32 Add instructions issued

sq_insts_valu_mul {32 Instr | Number of VALU F32 Multiply instructions issued
sq_insts_valu_fma_ 32 Instr | Number of VALU F32 FMA instructions issued

sq_insts_valu_ trans {32 Instr | Number of VALU F32 Transcendental instructions issued
sq_insts_valu_add_ f64 Instr | Number of VALU F64 Add instructions issued

sq_insts_valu_mul {64 Instr | Number of VALU F64 Multiply instructions issued

sq_insts_valu_ fma_ {64 Instr | Number of VALU F64 FMA instructions issued

sq_insts_valu_ trans 64 Instr | Number of VALU F64 Transcendental instructions issued

sq__insts_ valu_ int32 Instr | Number of VALU 32-bit integer instructions issued (signed or unsigned)
sq_insts valu_ int64 Instr | Number of VALU 64-bit integer instructions issued (signed or unsigned)
sq_insts_valu_ cvt Instr | Number of VALU Conversion instructions issued

sq_insts_ valu_mfma, i8 Instr | Number of 8-bit Integer MFMA instructions issued
sq_insts_valu_mfma_ f16 Instr | Number of F16 MFMA instructions issued

sq_insts valu_mfma_bfl6 | Instr | Number of BF16 MFMA instructions issued

sq_insts_valu_mfma_ 32 Instr | Number of F32 MFMA instructions issued

sq_insts_valu_ mfma_ {64 Instr | Number of F64 MFMA instructions issued

sq_insts__mfma Instr | Number of MFMA instructions issued

sq_insts__ vmem_ wr Instr | Number of VMEM Write instructions issued

sq_insts__vmem_ rd Instr | Number of VMEM Read instructions issued

sq_insts_ vmem Instr | Number of VMEM instructions issued, including both FLAT and Buffer instructions
sq_insts_salu Instr | Number of SALU instructions issued

sq_insts__smem Instr | Number of SMEM instructions issued

Sq_insts__smem_ norm Instr | Number of SMEM instructions issued to normalize to match smem_level. Used in n
sq_insts_flat Instr | Number of FLAT instructions issued

sq_insts_flat 1ds only Instr | Number of FLAT instructions issued that read/write only from/to LDS
sq_insts_ lds Instr | Number of LDS instructions issued

sq_insts_ gds Instr | Number of GDS instructions issued

sq_insts__exp_ gds Instr | Number of EXP and GDS instructions excluding skipped export instructions issued
sq_ insts__branch Instr | Number of Branch instructions issued

sq__insts__sendmsg Instr | Number of SENDMSG instructions including s__endpgm issued
sq_insts_ vskipped|[] Instr | Number of VSkipped instructions issued

30.5.1.4.2 MFMA Operation Counters

Hardware Counter Unit Definition

sq_insts_valu_mfma_mops_ I8 10P Number of 8-bit integer MFMA ops in unit of 512
sq_insts_valu_mfma_mops_F16 FLOP | Number of F16 floating MFMA ops in unit of 512
sq_insts_ valu_mfma_ mops_BF16 | FLOP | Number of BF16 floating MEMA ops in unit of 512
sq_insts_ valu__mfma_mops_ F32 FLOP | Number of F32 floating MFMA ops in unit of 512
sq_insts_ valu__mfma_mops_ F64 FLOP | Number of F64 floating MFMA ops in unit of 512

30.5. MI200 Performance Counters and Metrics

325

ROCm Documentation, Release 5.7.1

30.5.1.4.3 Level Counters

Hardware Counter

Unit

Definition

S(_accum_ prev

Count

Accumulated counter sample value where accumulation takes place once
every four cycles

sq_accum_ prev__hii

eCount

Accumulated counter sample value where accumulation takes place once
every cycle

sq_level waves

Wayves

Number of inflight waves

sq_insts_ level vmemnstr

Number of inflight VMEM instructions

sq_insts_ level smemlnstr

Number of inflight SMEM instructions

sq_insts_level lds

Instr

Number of inflight LDS instructions

sq_ifetch_ level

Instr

Number of inflight instruction fetches

30.5.1.4.4 Wavefront Counters

Hardware Counter | Unit | Definition

Sq__waves Waves | Number of wavefronts dispatch to SQs, including both new and restored
wavefronts

sq_waves_saved[«] | Waves| Number of context-saved wavefronts

sq_waves_ restored[%] Waves | Number of context-restored wavefronts

sq_waves_eq 64 Waves | Number of wavefronts with exactly 64 active threads sent to SQs

sq_waves_ 1t 64 Waves | Number of wavefronts with less than 64 active threads sent to SQs

sq_waves_ 1t_ 48 Waves | Number of wavefronts with less than 48 active threads sent to SQs

sq_waves_ 1t_ 32 Waves | Number of wavefronts with less than 32 active threads sent to SQs

sq_waves_1t_ 16 Waves | Number of wavefronts with less than 16 active threads sent to SQs

326

Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

30.5.1.4.5 Wavefront Cycle Counters

Hardware Counter | Unit | Definition

sq_cycles Cy- | Free-running SQ clocks
cles
sq__busy__cycles Cy- | Number of cycles while SQ reports it to be busy
cles
sq__busy_ cu_ cycles Qcy- | Number of quad-cycles each CU is busy
cles
sq_ valu_mfma_ busyCweycleiNumber of cycles the MFMA ALU is busy
cles
sq_wave_ cycles Qcy- | Number of quad-cycles spent by waves in the CUs
cles
sq_wait__any Qcy- | Number of quad-cycles spent waiting for anything
cles
sq_wait_inst_any | Qcy- | Number of quad-cycles spent waiting for an issued instruction
cles
sq_active_inst_any Qcy- | Number of quad-cycles spent by each wave to work on an instruction
cles

sq_active_inst_ vmefdcy- | Number of quad-cycles spent by each wave to work on a non-FLAT VMEM
cles | instruction
sq_active_inst_1lds Qcy- | Number of quad-cycles spent by each wave to work on an LDS instruction

cles

sq_active_inst_ valuQcy- | Number of quad-cycles spent by each wave to work on a VALU instruction
cles

sq_active_inst_scq Qcy- | Number of quad-cycles spent by each wave to work on an SCA instruction
cles

sq_active_inst_exp Quels- | Number of quad-cycles spent by each wave to work on EXP or GDS instruc-
cles | tion

sq_active inst_ miscQcy- | Number of quad-cycles spent by each wave to work on an MISC instruction,
cles including branch and sendmsg

sq_active_inst_flay Qcy- | Number of quad-cycles spent by each wave to work on a FLAT instruction
cles
sq_inst_ cycles_ vmefcywr| Number of quad-cycles spent to send addr and cmd data for VMEM Write
cles | instructions, including both FLAT and Buffer

sq_inst_ cycles_ vmeQcwd| Number of quad-cycles spent to send addr and cmd data for VMEM Read
cles | instructions, including both FLAT and Buffer

sq_inst_ cycles_ smpi@cy- | Number of quad-cycles spent to execute scalar memory reads

cles

sq_inst_ cycles_salp Cy- | Number of cycles spent to execute non-memory read scalar operations
cles

sq_thread_cycles_dlly- | Number of thread-cycles spent to execute VALU operations
cles

30.5. MI200 Performance Counters and Metrics 327

ROCm Documentation, Release 5.7.1

30.5.1.4.6 Local Data Share

Hardware Counter Unit Definition
sq_lds atomic_return Cy- Number of atomic return cycles in LDS
cles
sq_lds_bank_ conflict Cy- Number of cycles LDS is stalled by bank conflicts
cles
sq_lds_addr_ conflict[x] Cy- Number of cycles LDS is stalled by address conflicts
cles
sq_lds_unaligned_stalls[x| Cy- Number of cycles LDS is stalled processing flat unaligned load/store
cles ops
sq_lds_mem_ violations[*] Count | Number of threads that have a memory violation in the LDS

30.5.1.4.7 Miscellaneous

30.5.1.4.7.1 Local Data Share

Hardware Counter | Unit Definition
sq_ifetch Count Number of fetch requests from L1I cache, in 32-byte width
sq_items Threads | Number of valid threads

328

Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

30.5.1.5 L1I and sL1D Caches

30.5.1.5.1 L1I and sL1D Caches

Hardware Counter Unit | Definition

sqc__icache_req Req | Number of L1I cache requests

sqc_icache_ hits Count Number of L11I cache lookup-hits
sqc__icache__misses Count Number of L1I cache non-duplicate lookup-misses

sqc_icache misses duflonaie Number of d L1I cache duplicate lookup misses whose previous lookup miss
on the same cache line is not fulfilled yet

sqc__dcache_req Req | Number of sLL1D cache requests

sqc_dcache_input_ validy-readbumber of cycles while SQ input is valid but sL1D cache is not ready
cles

sqc__dcache_ hits Count Number of sL1D cache lookup-hits

sqc__dcache__misses | Count Number of sL1D non-duplicate lookup-misses
sqc_dcache misses_ duptinateNumber of sL1D duplicate lookup-misses

sqc_dcache_req read_Req | Number of Read requests in a single 32-bit Data Word, DWORD (DW)
sqc_dcache_req read Req | Number of Read requests in 2 DW

sqc_dcache _req read Rleq | Number of Read requests in 4 DW

sqc_dcache req read Req | Number of Read requests in 8 DW

sqc_dcache req read Réq | Number of Read requests in 16 DW

sqc__dcache_atomic[*] Req | Number of Atomic requests

sqc_tc_req Req | Number of L2 cache requests that were issued by instruction and constant
caches
sqc_tc_inst_req Req | Number of instruction cache line requests to L2 cache

sqc_tc_data_read_reqReq | Number of data Read requests to the L2 cache

sqc_te_data_ write_reRled | Number of data Write requests to the L2 cache
sqc__tc__data_atomic| Refx]| Number of data Atomic requests to the L2 cache

sqc__te__stall[x] Cy- | Number of cycles while the valid requests to L2 Cache are stalled
cles

30.5.1.6 Vector L1 Cache Subsystem

The vector L1 cache subsystem counters are further classified into texture addressing unit, texture data unit,
vector L1D cache, and texture cache arbiter.

30.5. MI200 Performance Counters and Metrics 329

ROCm Documentation, Release 5.7.1

30.5.1.6.1 Texture Addressing Unit

30.5.1.6.1.1 Texture Addressing Unit Counters

Hardware Counter Unit Definition
ta_ ta_ busy Cycles | TA busy cycles
ta_ total wavefronts Instr Number of wavefront instructions
ta_ buffer wavefronts Instr Number of Buffer wavefront instructions
ta_ buffer_read_wavefronts Instr Number of Buffer Read wavefront instructions
ta_ buffer write wavefronts Instr Number of Buffer Write wavefront instructions
ta_ buffer_atomic_ wavefronts|*] Instr Number of Buffer Atomic wavefront instructions
ta_ buffer_ total cycles Cycles | Number of Buffer cycles, including Read and Write
ta_ buffer_ coalesced_read_ cycles Cycles | Number of coalesced Buffer read cycles
ta_ buffer_ coalesced_write_cycles | Cycles | Number of coalesced Buffer write cycles
ta_addr_stalled_by_ tc Cycles | Number of cycles TA address is stalled by TCP
ta_ data_ stalled_by_ tc Cycles | Number of cycles TA data is stalled by TCP
ta_addr_stalled_by_td_cycles[*] | Cycles | Number of cycles TA address is stalled by TD
ta_ flatwavefronts Instr Number of Flat wavefront instructions
ta_ flat read_wavefronts Instr Number of Flat Read wavefront instructions
ta_ flat write wavefronts Instr Number of Flat Write wavefront instructions
ta_ flat atomic wavefronts Instr Number of Flat Atomic wavefront instructions
30.5.1.6.2 Texture Data Unit
30.5.1.6.2.1 Texture Data Unit Counters
Hardware Counter Unit Definition
td_td_ busy Cycle | TD busy cycles
td__tc_stall Cycle | Number of cycles TD is stalled by TCP
td__spi_ stall[x] Cycle | Number of cycles TD is stalled by SPI
td_load_wavefront Instr | Number of wavefront instructions (Read/Write/Atomic)
td_ store wavefront Instr | Number of Write wavefront instructions
td__atomic wavefront Instr | Number of Atomic wavefront instructions
td__coalescable wavefront | Instr | Number of coalescable instructions
30.5.1.6.3 Vector L1D Cache
Hardware Counter Unit Definition
tcp__gate_enl Cycles | Number of cycles/ vL1D interface clocks are turned on
tcp__gate__en2 Cycles | Number of cycles vLL1D core clocks are turned on
tep_td__tep_stall cycles Cycles | Number of cycles TD stalls vLL1D
tep__ter__tep__stall__cycles Cycles | Number of cycles TCR stalls vLL1D

tep__read_tagconflict_ stall_cycles

Cycles

Number of cycles tagram conflict stalls on a Read

tep__write_tagconflict_stall _cycles

Cycles

Number of cycles tagram conflict stalls on a Write

tcp__atomic_tagconflict_stall cycles

Cycles

Number of cycles tagram conflict stalls on an Atomic

tcp__pending stall_cycles

Cycles

Number of cycles vLL1D cache is stalled due to data pending from L2 Cac

330

Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

Table 30.3 — continued from previous page

Hardware Counter Unit Definition
tcp__ta_ tcp_ state_read Req Number of wavefront instruction requests to vL1D
tep__volatile[#] Req Number of L1 volatile pixels/buffers from TA
tcp__total accesses Req Number of vLL1D accesses
tep__total read Req Number of vL1D Read accesses
tcp__total write Req Number of vLL1D Write accesses
tep__total atomic_ with_ ret Req Number of vL1D Atomic with return
tcp__total _atomic_ without_ ret Req Number of vL1D Atomic without return
tep__total writeback invalidates Count | Number of vL1D Writebacks and Invalidates
tcp__utcll__request Req Number of address translation requests to UTCL1
tep__utcll_translation_ hit Req Number of UTCL1 translation hits
tcp__utcll_translation_ miss Req Number of UTCL1 translation misses
tep__utcll__persmission_ miss Req Number of UTCL1 permission misses
tcp__total cache_ accesses Req Number of vL1D cache accesses
tep__tep__latency Cycles | Accumulated wave access latency to vL1D over all wavefronts
tcp__tec__read_req latency Cycles | Accumulated vL1D-L2 request latency over all wavefronts for Reads and
tep__tce_ writereq latency Cycles | Accumulated vL.1D-L2 request latency over all wavefronts for Writes and
tep_tec read_ req Req Number of Read requests to L2 Cache
tep__tec_ write req Req Number of Write requests to L2 Cache
tep_tecc atomic_ with_ret_ req Req Number of Atomic requests to L2 Cache with return
tcp__tec atomic without ret_ req Req Number of Atomic requests to L2 Cache without return
tep__tce_nc_ read_req Req Number of NC Read requests to L2 Cache
tep__tee_uc_read_req Req Number of UC Read requests to L2 Cache
tep__tce__ccread_ req Req Number of CC Read requests to L2 Cache
tcp_tec _rw_read_req Req Number of RW Read requests to L2 Cache
tep__tcec _nc_ write_req Req Number of NC Write requests to L2 Cache
tcp__tec_uc_ write_req Req Number of UC Write requests to L2 Cache
tep__tce__ccwrite_req Req Number of CC Write requests to L2 Cache
tcp__tcec _rw_ write_ req Req Number of RW Write requests to L2 Cache
tep__tcec _nc_ atomic_ req Req Number of NC Atomic requests to L2 Cache
tcp__tec_uc_atomic_ req Req Number of UC Atomic requests to L2 Cache
tep__tce__cc_atomic_req Req Number of CC Atomic requests to L2 Cache
tcp__tce__rw__atomic_req Req Number of RW Atomic requests to L2 Cache
30.5.1.6.4 Texture Cache Arbiter (TCA)

Hardware Counter | Unit Definition

tca_ cycle Cycles | TCA cycles

tca_ busy Cycles | Number of cycles TCA has a pending request

30.5. MI200 Performance Counters and Metrics

331

ROCm Documentation, Release 5.7.1

30.5.1.7 L2 Cache Access

30.5.1.7.1 L2 Cache Access Counters

Hardware Counter Unit Definition

tee_cycle Cycle | L2 Cache free-running clocks

tce__busy Cycle | L2 Cache busy cycles

tce__req Req Number of L2 Cache requests

tee_streaming req[x] Req Number of L2 Cache Streaming requests

tcc_ NC__req Req Number of NC requests

tecc_ UC_req Req Number of UC requests

tecc_CC_req Req Number of CC requests

tcc_ RW__req Req Number of RW requests

tcc__probe Req Number of L2 Cache probe requests

tce__probe_all[x] Req Number of external probe requests with EA_ TCC__preq_all==1
tce__read_req Req Number of L2 Cache Read requests

tce__write_req Req Number of L2 Cache Write requests

tcc_atomic req Req Number of 1.2 Cache Atomic requests

tce_hit Req Number of L2 Cache lookup-hits

tce_ miss Req Number of L2 cache lookup-misses

tce__writeback Req Number of lines written back to main memory, including writebacks of dirf
tce__ea_ wrreq Req Total number of 32-byte and 64-byte Write requests to EA

tcc__ea_ wrreq 64B Req Total number of 64-byte Write requests to EA

tcc_ea wr_ uncached 32B Req Number of 32-byte Write/Atomic going over the TC_EA_ wrreq interface
tcc__ea_ wrreq_stall Cycles | Number of cycles a Write request was stalled

tece_ea_wrreq io_ credit_ stall[x] Cycles | Number of cycles an EA Write request runs out of 10 credits
tcc_ea_wrreq_gmi_ credit_stall[¥] | Cycles | Number of cycles an EA Write request runs out of GMI credits
tec_ea_wrreq dram_ credit_stall | Cycles | Number of cycles an EA Write request runs out of DRAM credits
tce__too_many_ea_wrregs_stall[] | Cycles | Number of cycles the L2 Cache reaches maximum number of pending EA
tcc_ea_ wrreq level Req Accumulated number of L2 Cache-EA Write requests in flight
tce__ea_atomic Req Number of 32-byte and 64-byte Atomic requests to EA

tcc_ea atomic level Req Accumulated number of L2 Cache-EA Atomic requests in flight

tcc__ea_ rdreq Req Total number of 32-byte and 64-byte Read requests to EA

tcc_ea_rdreq 32B Req Total number of 32-byte Read requests to EA

tcc_ea_rd_ uncached_32B Req Number of 32-byte .2 Cache-EA Read due to uncached traffic. A 64-byte
tce_ea_rdreq io_ credit_ stall[*] Cycles | Number of cycles Read request interface runs out of 10 credits
tcc_ea_rdreq gmi_ credit_stall[*] | Cycles | Number of cycles Read request interface runs out of GMI credits
tcc_ea_rdreq dram_ credit_ stall Cycles | Number of cycles Read request interface runs out of DRAM credits
tcc__ea_rdreq level Req Accumulated number of L2 Cache-EA Read requests in flight
tcc_ea_rdreq dram Req Number of 32-byte and 64-byte Read requests to HBM

tcc_ea_ wrreq dram Req Number of 32-byte and 64-byte Write requests to HBM

tcc_tag stall Cycles | Number of cycles the normal request pipeline in the tag was stalled for an;
tcec__normal writeback Req Number of L2 cache normal writeback

tee_all_tc_op_wb_ writeback]x] Req Number of instruction-triggered writeback requests

tcec__normal evict Req Number of L2 cache normal evictions

tee_all_te_op_inv__evict[#] Req Number of instruction-triggered eviction requests

332

Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

30.5.2 MI200 Derived Metrics List

30.5.2.1 Derived Metrics on MI200 GPUs

De- Description

rived

Metric

VFetchIn-The average number of vector fetch instructions from the video memory executed per work-item

sts (affected by flow control). Excludes FLAT instructions that fetch from video memory

VWrite-| The average number of vector write instructions to the video memory executed per work-item

Insts (affected by flow control). Excludes FLAT instructions that write to video memory

FlatVMerdlhstsverage number of FLAT instructions that read from or write to the video memory executed
per work item (affected by flow control). Includes FLAT instructions that read from or write
to scratch

LDSIn- | The average number of LDS read/write instructions executed per work item (affected by flow

sts control). Excludes FLAT instructions that read from or write to LDS

FlatLDSIFhe average number of FLAT instructions that read or write to LDS executed per work item

sts (affected by flow control)

VAL- The percentage of active vector ALU threads in a wave. A lower number can mean either more

UUti- thread divergence in a wave or that the work-group size is not a multiple of 64. Value range:

liza- 0% (bad), 100% (ideal - no thread divergence)

tion

VAL- The percentage of GPU time vector ALU instructions are processed. Value range: 0% (bad) to

UBusy | 100% (optimal)

SALUBus¥he percentage of GPU time scalar ALU instructions are processed. Value range: 0% (bad) to
100% (optimal)

MemWritéEd2B otal number of effective 32B write transactions to the memory

L2CachgHIthe percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache.
Value range: 0% (no hit) to 100% (optimal)

MemU- | The percentage of GPU time the memory unit is stalled. Try reducing the number or size of

nit- fetches and writes if possible. Value range: 0% (optimal) to 100% (bad)

Stalled

Write- | The percentage of GPU time the write unit is stalled. Value range: 0% to 100% (bad)

Unit-

Stalled

LDS- The percentage of GPU time LDS is stalled by bank conflicts. Value range: 0% (optimal) to

BankCon-100% (bad)

flict

30.5.3 Abbreviations

30.5.3.1 MI200 Abbreviations

Abbreviation | Meaning

ALU Arithmetic Logic Unit

Arb Arbiter

BF16 Brain Floating Point — 16 bits
CcC Coherently Cached

Cp Command Processor

30.5. MI200 Performance Counters and Metrics 333

ROCm Documentation, Release 5.7.1

Table 30.5 —
Abbreviation | Meaning
CPC Command Processor — Compute
CPF Command Processor — Fetcher
CS Compute Shader
CSC Compute Shader Controller
CSn Compute Shader, the n-th pipe
Cu Compute Unit
DW 32-bit Data Word, DWORD
EA Efficiency Arbiter
F16 Half Precision Floating Point
FLAT FLAT instructions allow read/write/atomic access to a generic memory address pointer, which can resolve
FMA Fused Multiply Add
GDS Global Data Share
GRBM Graphics Register Bus Manager
HBM High Bandwidth Memory
Instr Instructions
0P Integer Operation
L2 Level-2 Cache
LDS Local Data Share
ME1 Micro Engine, running packet processing firmware on CPC
MFMA Matrix Fused Multiply Add
NC Noncoherently Cached
RW Coherently Cached with Write
SALU Scalar ALU
SGPR Scalar GPR
SIMD Single Instruction Multiple Data
sL1D Scalar Level-1 Data Cache
SMEM Scalar Memory
SPI Shader Processor Input
SQ Sequencer
TA Texture Addressing Unit
TC Texture Cache
TCA Texture Cache Arbiter
TCC Texture Cache per Channel, known as L2 Cache
TCIU Texture Cache Interface Unit, Command Processor (CP)’s interface to memory system
TCP Texture Cache per Pipe, known as vector L1 Cache
TCR Texture Cache Router
TD Texture Data Unit
ucC Uncached
UTCL1 Unified Translation Cache — Level 1
UTCL2 Unified Translation Cache — Level 2
VALU Vector ALU
VGPR Vector GPR
vL1D Vector Level -1 Data Cache
VMEM Vector Memory

334 Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

30.6 AMD Instinct™ MI100 Hardware

In this chapter, we are going to briefly review hardware aspects of the AMD Instinct™ MI100 accelerators
and the CDNA architecture that is the foundation of these GPUs.

30.6.1 System Architecture

Fig. 30.4 shows the node-level architecture of a system that comprises two AMD EPYC™ processors and
(up to) eight AMD Instinct™ accelerators. The two EPYC processors are connected to each other with the
AMD Infinity™ fabric which provides a high-bandwidth (up to 18 GT/sec) and coherent links such that
each processor can access the available node memory as a single shared-memory domain in a non-uniform
memory architecture (NUMA) fashion. In a 2P, or dual-socket, configuration, three AMD Infinity™ fabric
links are available to connect the processors plus one PCle Gen 4 x16 link per processor can attach additional
I/0 devices such as the host adapters for the network fabric.

To 11O To /O
Devices Devices

e AMID Infinity Fabric™, 18 GT/sec

— AMD Infinity Fabric™, 23 GT/sec AMD EPYC™ AMD EPY ™
=P Cle Gen 4 X16, 16 GT/sec Processor Processor

Fig. 30.4: Structure of a single GCD in the AMD Instinct MI100 accelerator.

In a typical node configuration, each processor can host up to four AMD Instinct™ accelerators that are
attached using PCle Gen 4 links at 16 GT/sec, which corresponds to a peak bidirectional link bandwidth
of 32 GB/sec. Each hive of four accelerators can participate in a fully connected, coherent AMD Instinct™
fabric that connects the four accelerators using 23 GT/sec AMD Infinity fabric links that run at a higher
frequency than the inter-processor links. This inter-GPU link can be established in certified server systems
if the GPUs are mounted in neighboring PCle slots by installing the AMD Infinity Fabric™ bridge for the
AMD Instinct™ accelerators.

30.6. AMD Instinct™ MI100 Hardware 335

ROCm Documentation, Release 5.7.1

30.6.2 Micro-architecture

The micro-architecture of the AMD Instinct accelerators is based on the AMD CDNA architecture, which
targets compute applications such as high-performance computing (HPC) and AI & machine learning (ML)
that run on everything from individual servers to the world’s largest exascale supercomputers. The overall
system architecture is designed for extreme scalability and compute performance.

Shader Engine Shader Engine

Shader Engine —

- . AMD Infinity Fabric™ AMD Infinity Fabnic™ AMD Infinity Fabric™

Fig. 30.5: Structure of the AMD Instinct accelerator (MI100 generation).

Fig. 30.5 shows the AMD Instinct accelerator with its PCle Gen 4 x16 link (16 GT/sec, at the bottom) that
connects the GPU to (one of) the host processor(s). It also shows the three AMD Infinity Fabric ports that
provide high-speed links (23 GT/sec, also at the bottom) to the other GPUs of the local hive as shown in
Fig. 30.4.

On the left and right of the floor plan, the High Bandwidth Memory (HBM) attaches via the GPU’s memory
controller. The MI100 generation of the AMD Instinct accelerator offers four stacks of HBM generation 2
(HBM2) for a total of 32GB with a 4,096bit-wide memory interface. The peak memory bandwidth of the
attached HBM2 is 1.228 TB/sec at a memory clock frequency of 1.2 GHz.

The execution units of the GPU are depicted in Fig. 30.5 as Compute Units (CU). There are a total 120
compute units that are physically organized into eight Shader Engines (SE) with fifteen compute units per
shader engine. Each compute unit is further sub-divided into four SIMD units that process SIMD instructions
of 16 data elements per instruction. This enables the CU to process 64 data elements (a so-called ‘wavefront’)

at a peak clock frequency of 1.5 GHz. Therefore, the theoretical maximum FP64 peak performance is 11.5
TFLOPS (4 [SIMD units] x 16 [elements per instruction] x 120 [CU] x 1.5 [GHz]).

Fig. 30.6 shows the block diagram of a single CU of an AMD Instinct™ MI100 accelerator and summarizes
how instructions flow through the execution engines. The CU fetches the instructions via a 32KB instruction

336 Chapter 30. GPU Architectures

ROCm Documentation, Release 5.7.1

PEIT LT LIS BTH

— OATA EEWAT 03 DRECT 5T DATR OTHER
1T T | ' UmDs
- F—
_ - pr——_
Vector Register File | ’
SALL SHEM .y 1 b
-~ AU SCALKR
wau 1 l Scabar Scabor Cache 1 MEM REQ
| & || 10 Wave tatrs —
o r ECTOR
E s —~| Operand Gathering and xBAR |a—-:,,l,.m.‘,
NSTRUCTION o | Dt | SPx1G | HPa32 | SFlid | Matstx Unit l'.
wesoy e - | RN e EXPORT
L A MG, sk,
- = Export | Destination Scheduling
" OTHER J
S

Fig. 30.6: Block diagram of an MI100 compute unit with detailed SIMD view of the AMD CDNA architecture

cache and moves them forward to execution via a dispatcher. The CU can handle up to ten wavefronts at
a time and feed their instructions into the execution unit. The execution unit contains 256 vector general-
purpose registers (VGPR) and 800 scalar general-purpose registers (SGPR). The VGPR and SGPR are
dynamically allocated to the executing wavefronts. A wavefront can access a maximum of 102 scalar registers.
Excess scalar-register usage will cause register spilling and thus may affect execution performance.

A wavefront can occupy any number of VGPRs from 0 to 256, directly affecting occupancy; that is, the
number of concurrently active wavefronts in the CU. For instance, with 119 VGPRs used, only two wavefronts
can be active in the CU at the same time. With the instruction latency of four cycles per SIMD instruction,
the occupancy should be as high as possible such that the compute unit can improve execution efficiency by

scheduling instructions from multiple wavefronts.

Table 30.6: Peak-performance capabilities of MI100 for different

data types.
Computation and Data Type | FLOPS/CLOCK/CU | Peak TFLOPS
Vector FP64 64 11.5
Matrix FP32 256 46.1
Vector FP32 128 23.1
Matrix FP16 1024 184.6
Matrix BF16 512 92.3

30.6. AMD Instinct™ MI100 Hardware

337

ROCm Documentation, Release 5.7.1

338 Chapter 30. GPU Architectures

CHAPTER

THIRTYONE

USING THE LLVM ADDRESS SANITIZER (ASAN) ON THE GPU

The LLVM Address Sanitizer provides a process that allows developers to detect runtime addressing errors in
applications and libraries. The detection is achieved using a combination of compiler-added instrumentation
and runtime techniques, including function interception and replacement.

Until now, the LLVM Address Sanitizer process was only available for traditional purely CPU applications.
However, ROCm has extended this mechanism to additionally allow the detection of some addressing errors
on the GPU in heterogeneous applications. Ideally, developers should treat heterogeneous HIP and OpenMP
applications exactly like pure CPU applications. However, this simplicity has not been achieved yet.

This document provides documentation on using ROCm Address Sanitizer. For information about LLVM
Address Sanitizer, see the LLVM documentation.

339

https://clang.llvm.org/docs/AddressSanitizer.html

ROCm Documentation, Release 5.7.1

340 Chapter 31. Using the LLVM Address Sanitizer (ASAN) on the GPU

CHAPTER

THIRTYTWO

COMPILE FOR ADDRESS SANITIZER

The address sanitizer process begins by compiling the application of interest with the address sanitizer
instrumentation.

Recommendations for doing this are:

e Compile as many application and dependent library sources as possible using an AMD-built clang-based
compiler such as amdclang++.

o Add the following options to the existing compiler and linker options:
— -fsanitize=address - enables instrumentation
— -shared-libsan - use shared version of runtime
— -g - add debug info for improved reporting

o Explicitly use xnack+ in the offload architecture option. For example, --offload-arch=gfx90a:xnack+
Other architectures are allowed, but their device code will not be instrumented and a warning will be
emitted.

It is not an error to compile some files without address sanitizer instrumentation, but doing so reduces the
ability of the process to detect addressing errors. However, if the main program “a.out” does not directly
depend on the Address Sanitizer runtime (libclang rt.asan-x86_64.s0) after the build completes (check by
running 1dd (List Dynamic Dependencies) or readelf), the application will immediately report an error at
runtime as described in the next section.

32.1 About Compilation Time

When -fsanitize=address is used, the LLVM compiler adds instrumentation code around every memory
operation. This added code must be handled by all of the downstream components of the compiler toolchain
and results in increased overall compilation time. This increase is especially evident in the AMDGPU device
compiler and has in a few instances raised the compile time to an unacceptable level.

There are a few options if the compile time becomes unacceptable:

o Avoid instrumentation of the files which have the worst compile times. This will reduce the effectiveness
of the address sanitizer process.

o Add the option -fsanitize-recover=address to the compiles with the worst compile times. This option
simplifies the added instrumentation resulting in faster compilation. See below for more information.

 Disable instrumentation on a per-function basis by adding ___attribute__ ((no_sanitize(“address”)))
to functions found to be responsible for the large compile time. Again, this will reduce the effectiveness
of the process.

341

ROCm Documentation, Release 5.7.1

342 Chapter 32. Compile for Address Sanitizer

CHAPTER

THIRTYTHREE

USE AMD SUPPLIED ADDRESS SANITIZER INSTRUMENTED
LIBRARIES

ROCm releases provide optional packages containing address sanitizer instrumented builds of a subset of
those ROCm libraries usually found in /opt/rocm-<version>/lib. These optional packages are typically
named -asan. However, the instrumented libraries themselves have identical names as the regular unin-
strumented libraries and are located in /opt/rocm-<version>/lib/asan. It is expected that the subset of
address sanitizer instrumented ROCm libraries will be expanded in future releases. They are built using
the amdclang+-+ and hipcc compilers, while some uninstrumented libraries are built with g+-+. The pre-
existing build options are used, but, as described above, additional options are used: -fsanitize=address,
-shared-libsan and -g.

These additional libraries avoid additional developer effort to locate repositories, identify the correct branch,
check out the correct tags, and other efforts needed to build the libraries from the source. And they extend
the ability of the process to detect addressing errors into the ROCm libraries themselves.

When adjusting an application build to add instrumentation, linking against these instrumented libraries is
unnecessary. For example, any -L /opt/rocm-<version>/lib compiler options need not be changed. However,
the instrumented libraries should be used when the application is run. It is particularly important that the
instrumented language runtimes, like libamdhip64.so and librocm-core.so, are used; otherwise, device invalid
access detections may not be reported.

343

ROCm Documentation, Release 5.7.1

344 Chapter 33. Use AMD Supplied Address Sanitizer Instrumented Libraries

CHAPTER

THIRTYFOUR

RUNNING ADDRESS SANITIZER INSTRUMENTED APPLICATIONS

34.1 Preparing to Run an Instrumented Application

Here are a few recommendations to consider before running an address sanitizer instrumented heterogeneous
application.

o Ensure the Linux kernel running on the system has Heterogeneous Memory Management (HMM)
support. A kernel version of 5.6 or higher should be sufficient.

e Ensure XNACK is enabled
— For gfx90a (MI-2X0) or gfx940 (MI-3X0) use environment HSA_XNACK = 1.

— For gfx906 (MI-50) or gfx908 (MI-100) use environment HSA_XNACK = 1 but also ensure the
amdgpu kernel module is loaded with module argument noretry=0.
This requirement is due to the fact that the XNACK setting for these GPUs is system-wide.

e Ensure that the application will use the instrumented libraries when it runs. The output from the
shell command ldd <application name> can be used to see which libraries will be used. If the instru-
mented libraries are not listed by ldd, the environment variable LD_LIBRARY_PATH may need to
be adjusted, or in some cases an RPATH compiled into the application may need to be changed and
the application recompiled.

e Ensure that the application depends on the address sanitizer runtime. This can be checked by run-
ning the command readelf -d <application name> | grep NEEDED and verifying that shared library:
libclang rt.asan-x86_ 64.so appears in the output. If it does not appear, when executed the application
will quickly output an address sanitizer error that looks like:

==3210==ASan runtime does not come first in initial library list; you should either link runtime to your,
—application or manually preload it with LD_PRELOAD.

o Ensure that the application llvim-symbolizer can be executed, and that it is located in /opt/
rocm-<version>/llvm/bin. This executable is not strictly required, but if found is used to translate
(“symbolize”) a host-side instruction address into a more useful function name, file name, and line
number (assuming the application has been built to include debug information).

There is an environment variable, ASAN__OPTIONS which can be used to adjust the runtime behavior of
the ASAN runtime itself. There are more than a hundred “flags” that can be adjusted (see an old list at
flags) but the default settings are correct and should be used in most cases. It must be noted that these
options only affect the host ASAN runtime. The device runtime only currently supports the default settings
for the few relevant options.

There are two ASAN__ OPTION flags of particular note.
o halt_on_error=0/1 default 1.

345

https://github.com/google/sanitizers/wiki/AddressSanitizerFlags

ROCm Documentation, Release 5.7.1

This tells the ASAN runtime to halt the application immediately after detecting and reporting an addressing
error. The default makes sense because the application has entered the realm of undefined behavior. If the
developer wishes to have the application continue anyway, this option can be set to zero. However, the
application and libraries should then be compiled with the additional option -fsanitize-recover=address.
Note that the ROCm optional address sanitizer instrumented libraries are not compiled with this option and
if an error is detected within one of them, but halt _on_ error is set to 0, more undefined behavior will occur.

o detect_leaks=0/1 default 1. This option directs the address sanitizer runtime to enable the Leak San-
itizer (LSAN). Unfortunately, for heterogeneous applications, this default will result in significant out-
put from the leak sanitizer when the application exits due to allocations made by the language runtime
which are not considered to be to be leaks. This output can be avoided by adding detect_ leaks=0 to
the ASAN__ OPTIONS, or alternatively by producing an LSAN suppression file (syntax described here)
and activating it with environment variable LSAN__ OPTTONS=suppressions=/path/to/suppression/
file. When using a suppression file, a suppression report is printed by default. The suppression report
can be disabled by using the LSAN__OPTIONS flag print_ suppressions=0.

346 Chapter 34. Running Address Sanitizer Instrumented Applications

https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer

CHAPTER

THIRTYFIVE

RUNTIME OVERHEAD

Running an address sanitizer instrumented application incurs overheads which may result in unacceptably
long runtimes or failure to run at all.

35.1 Higher Execution Time

Address sanitizer detection works by checking each address at runtime before the address is actually accessed
by a load, store, or atomic instruction. This checking involves an additional load to “shadow” memory which
records whether the address is “poisoned” or not, and additional logic that decides whether to produce an
detection report or not.

This extra runtime work can cause the application to slow down by a factor of three or more, depending
on how many memory accesses are executed. For heterogeneous applications, the shadow memory must be
accessible by all devices and this can mean that shadow accesses from some devices may be more costly than
non-shadow accesses.

35.2 Higher Memory Use

The address checking described above relies on the compiler to surround each program variable with a red
zone and on address sanitizer runtime to surround each runtime memory allocation with a red zone and fill
the shadow corresponding to each red zone with poison. The added memory for the red zones is additional
overhead on top of the 13% overhead for the shadow memory itself.

Applications which consume most one or more available memory pools when run normally are likely to
encounter allocation failures when run with instrumentation.

347

ROCm Documentation, Release 5.7.1

348 Chapter 35. Runtime Overhead

CHAPTER

THIRTYSIX

RUNTIME REPORTING

It is not the intention of this document to provide a detailed explanation of all of the types of reports that
can be output by the address sanitizer runtime. Instead, the focus is on the differences between the standard
reports for CPU issues, and reports for GPU issues.

An invalid address detection report for the CPU always starts with

==<PID>==ERROR: AddressSanitizer: <problem type> on address <memory address> at pc <pc> bp <bp>,
—sp <sp> <access> of size <N> at <memory address> thread T0

and continues with a stack trace for the access, a stack trace for the allocation and deallocation, if relevant,
and a dump of the shadow near the .

In contrast, an invalid address detection report for the GPU always starts with

==<PID>==ERROR: AddressSanitizer: <problem type> on amdgpu device <device> at pc <pc> <access> of |
—size <n> in workgroup id (<X>,<Y>,<Z>)

Above, <device> is the integer device ID, and (<X>, <Y>, <Z>) is the ID of the workgroup or block
where the invalid address was detected.

While the CPU report include a call stack for the thread attempting the invalid access, the GPU is currently
to a call stack of size one, i.e. the (symbolized) of the invalid access, e.g.

#0 <pc> in <fuction signature> at /path/to/file.hip:<line>:<column>

This short call stack is followed by a GPU unique section that looks like

Thread ids and accessed addresses:
<lid0O> <maddr 0> : <lidl1> <maddrl> : ...

where each <lid j> <maddr j> indicates the lane ID and the invalid memory address held by lane j of the
wavefront attempting the invalid access.

Additionally, reports for invalid GPU accesses to memory allocated by GPU code via malloc or new starting
with, for example,

==1234==ERROR: AddressSanitizer: heap-buffer-overflow on amdgpu device 0 at pc 0x7fa9f5c92dcc

or

==5678==ERROR: AddressSanitizer: heap-use-after-free on amdgpu device 3 at pc 0x7f4c10062d74

currently may include one or two surprising CPU side tracebacks mentioning :hostcall”. This is due to how
malloc and free are implemented for GPU code and these call stacks can be ignored.

349

ROCm Documentation, Release 5.7.1

350 Chapter 36. Runtime Reporting

CHAPTER

THIRTYSEVEN

RUNNING WITH ROCGDB

rocgdb can be used to further investigate address sanitizer detected errors, with some preparation.

Currently, the address sanitizer runtime complains when starting rocgdb without preparation.

$ rocgdb my app
==1122==ASan" runtime does not come first in initial library list; you should either link runtime to your,
—application or manually preload it with LD__ PRELOAD.

This is solved by setting environment variable LD_ PRELOAD to the path to the address sanitizer runtime,
whose path can be obtained using the command

amdclang++ -print-file-name=libclang_rt.asan-x86_ 64.so

It is also recommended to set the environment variable HIP. ENABLE DEFERRED LOADING=0 before
debugging HIP applications.

After starting rocgdb breakpoints can be set on the address sanitizer runtime error reporting entry points
of interest. For example, if an address sanitizer error report includes

WRITE of size 4 in workgroup id (10,0,0)

the rocgdb command needed to stop the program before the report is printed is

(gdb) break _ asan_ report_ store4

Similarly, the appropriate command for a report including

READ of size <N> in workgroup ID (1,2,3)

is

(gdb) break _ asan_report_load<N>

It is possible to set breakpoints on all address sanitizer report functions using these commands:

$ rocgdb <path to application>

(gdb) start <commmand line arguments>
(gdb) rbreak ~__ asan_ report

(gdb) ¢

351

ROCm Documentation, Release 5.7.1

352 Chapter 37. Running with rocgdb

CHAPTER
THIRTYEIGHT

USING ADDRESS SANITIZER WITH A SHORT HIP APPLICATION
(LINK NEEDED HERE)

353

ROCm Documentation, Release 5.7.1

354 Chapter 38. Using Address Sanitizer with a Short HIP Application (LINK NEEDED HERE)

CHAPTER

THIRTYNINE

KNOWN ISSUES WITH USING GPU SANITIZER

Red zones must have limited size and it is possible for an invalid access to completely miss a red zone
and not be detected.

Lack of detection or false reports can be caused by the runtime not properly maintaining red zone
shadows.

Lack of detection on the GPU might also be due to the implementation not instrumenting accesses to
all GPU specific address spaces. For example, in the current implementation accesses to “private” or
“stack” variables on the GPU are not instrumented, and accesses to HIP shared variables (also known
as “local data store” or “LDS”) are also not instrumented.

It can also be the case that a memory fault is hit for an invalid address even with the instrumentation.
This is usually caused by the invalid address being so wild that its shadow address is outside of any
memory region, and the fault actually occurs on the access to the shadow address. It is also possible
to hit a memory fault for the NULL pointer. While address 0 does have a shadow location, it is not
poisoned by the runtime.

355

ROCm Documentation, Release 5.7.1

356 Chapter 39. Known Issues with Using GPU Sanitizer

CHAPTER

FORTY

HOW ROCM USES PCIE ATOMICS

40.1 ROCm PCle Feature and Overview BAR Memory

ROCm is an extension of HSA platform architecture, so it shares the queueing model, memory model,
signaling and synchronization protocols. Platform atomics are integral to perform queuing and signaling
memory operations where there may be multiple-writers across CPU and GPU agents.

The full list of HSA system architecture platform requirements are here: HSA Sys Arch Features.

The ROCm Platform uses the new PCI Express 3.0 (PCle 3.0) features for Atomic Read-Modify-Write
Transactions which extends inter-processor synchronization mechanisms to IO to support the defined set of
HSA capabilities needed for queuing and signaling memory operations.

The new PCle AtomicOps operate as completers for CAS (Compare and Swap), FetchADD, SWAP atomics.
The AtomicsOps are initiated by the I/O device which support 32-bit, 64-bit and 128-bit operand which
target address have to be naturally aligned to operation sizes.

For ROCm the Platform atomics are used in ROCm in the following ways:

e Update HSA queue’s read_ dispatch_id: 64 bit atomic add used by the command processor on the
GPU agent to update the packet ID it processed.

e Update HSA queue’s write_ dispatch_id: 64 bit atomic add used by the CPU and GPU agent to
support multi-writer queue insertions.

o Update HSA Signals — 64bit atomic ops are used for CPU & GPU synchronization.

The PCle 3.0 AtomicOp feature allows atomic transactions to be requested by, routed through and completed
by PCle components. Routing and completion does not require software support. Component support for
each is detectable via the DEVCAP2 register. Upstream bridges need to have AtomicOp routing enabled
or the Atomic Operations will fail even though PCle endpoint and PCle I/O Devices has the capability to
Atomics Operations.

To do AtomicOp routing capability between two or more Root Ports, each associated Root Port must indicate
that capability via the AtomicOp Routing Supported bit in the Device Capabilities 2 register.

If your system has a PCle Express Switch it needs to support AtomicsOp routing. Again AtomicOp requests
are permitted only if a component’s DEVCTL2.ATOMICOP_ REQUESTER_ ENABLE field is set. These
requests can only be serviced if the upstream components support AtomicOp completion and/or routing to a
component which does. AtomicOp Routing Support=1 Routing is supported, AtomicOp Routing Support=0
routing is not supported.

Atomic Operation is a Non-Posted transaction supporting 32-bit and 64-bit address formats, there must
be a response for Completion containing the result of the operation. Errors associated with the operation
(uncorrectable error accessing the target location or carrying out the Atomic operation) are signaled to the

357

http://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf

ROCm Documentation, Release 5.7.1

requester by setting the Completion Status field in the completion descriptor, they are set to to Completer
Abort (CA) or Unsupported Request (UR).

To understand more about how PCle Atomic operations work PCle Atomics
Linux Kernel Patch to pci__enable atomic_ request
There are also a number of papers which talk about these new capabilities:
e Atomic Read Modify Write Primitives by Intel
e PCI express 3 Accelerator Whitepaper by Intel
e Intel PCle Generation 3 Hotchips Paper
e PCle Generation 4 Base Specification includes Atomics Operation
Other 1/0 devices with PCle Atomics support
e Mellanox ConnectX-5 InfiniBand Card
e Cray Aries Interconnect
e Xilinx PCle Ultrascale Whitepaper
e Xilinx 7 Series Devices
Future bus technology with richer I/O Atomics Operation Support
e GenZ

New PCle Endpoints with support beyond AMD Ryzen and EPYC CPU; Intel Haswell or newer CPU’s with
PCle Generation 3.0 support.

e Mellanox Bluefield SOC
e Cavium Thunder X2

In ROCm, we also take advantage of PCle ID based ordering technology for P2P when the GPU originates
two writes to two different targets:

1. write to another GPU memory,

2. then write to system memory to indicate transfer complete.

They are routed off to different ends of the computer but we want to make sure the write to system memory
to indicate transfer complete occurs AFTER P2P write to GPU has complete.

40.1.1 BAR Memory Overview
On a Xeon Eb5 based system in the BIOS we can turn on above 4GB PCle addressing, if so he need to set
MMIO Base address (MMIOH Base) and Range (MMIO High Size) in the BIOS.
In SuperMicro system in the system bios you need to see the following
o Advanced->PCle/PCI/PnP configuration-> Above 4G Decoding = Enabled
o Advanced->PCle/PCI/PnP Configuration->MMIOH Base = 512G
o Advanced->PCle/PCI/PuP Configuration->MMIO High Size = 256G
When we support Large Bar Capability there is a Large Bar Vbios which also disable the IO bar.
For GFX9 and VegalO which have Physical Address up 44 bit and 48 bit Virtual address.

358 Chapter 40. How ROCm uses PCle Atomics

https://pcisig.com/specifications/pciexpress/specifications/ECN_Atomic_Ops_080417.pdf
https://patchwork.kernel.org/project/linux-pci/patch/1443110390-4080-1-git-send-email-jay@jcornwall.me/
https://www.intel.es/content/dam/doc/white-paper/atomic-read-modify-write-primitives-i-o-devices-paper.pdf
https://www.intel.sg/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf
https://astralvx.com/storage/2020/11/PCI_Express_Base_4.0_Rev0.3_February19-2014.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
http://www.hoti.org/hoti20/slides/Bob_Alverson.pdf
https://docs.xilinx.com/v/u/8OZSA2V1b1LLU2rRCDVGQw
https://docs.xilinx.com/v/u/1nfXeFNnGpA0ywyykvWHWQ
https://docs.nvidia.com/networking/display/BlueFieldSWv25111213/BlueField+Software+Overview
https://en.wikichip.org/wiki/cavium/thunderx2

ROCm Documentation, Release 5.7.1

e BARO-1 registers: 64bit, prefetchable, GPU memory. 8GB or 16GB depending on Vegal0 SKU. Must
be placed < 2744 to support P2P access from other VegalO.

o BAR2-3 registers: 64bit, prefetchable, Doorbell. Must be placed < 2744 to support P2P access from
other VegalO.

e BARA4 register: Optional, not a boot device.
e BARS register: 32bit, non-prefetchable, MMIO. Must be placed < 4GB.
Here is how our BAR works on GFX 8 GPU’s with 40 bit Physical Address Limit

11:00.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Fiji [Radeon R9 FURY / NANO Series| (rev
<4>C1)

Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Device 0b35
Flags: bus master, fast devsel, latency 0, IRQ 119

Memory at bf40000000 (64-bit, prefetchable) [size=256M]

Memory at bf50000000 (64-bit, prefetchable) [size=2M]

I/0 ports at 3000 [size=256]

Memory at ¢7400000 (32-bit, non-prefetchable) [size=256K]

Expansion ROM at ¢7440000 [disabled] [size=128K]

Legend:

1 : GPU Frame Buffer BAR — In this example it happens to be 256M, but typically this will be size of the
GPU memory (typically 4GB+). This BAR has to be placed < 2740 to allow peer-to-peer access from other
GFX8 AMD GPUs. For GFX9 (Vega GPU) the BAR has to be placed < 2744 to allow peer-to-peer access
from other GFX9 AMD GPUs.

2 : Doorbell BAR — The size of the BAR is typically will be < 10MB (currently fixed at 2MB) for this
generation GPUs. This BAR has to be placed < 2740 to allow peer-to-peer access from other current
generation AMD GPUs.

3 : I0 BAR - This is for legacy VGA and boot device support, but since this the GPUs in this project are
not VGA devices (headless), this is not a concern even if the SBIOS does not setup.

4 : MMIO BAR — This is required for the AMD Driver SW to access the configuration registers. Since the
reminder of the BAR available is only 1 DWORD (32bit), this is placed < 4GB. This is fixed at 256 KB.

5 : Expansion ROM — This is required for the AMD Driver SW to access the GPU’s video-bios. This is
currently fixed at 128KB.

40.2 Excepts form Overview of Changes to PCI Express 3.0

40.2.1 By Mike Jackson, Senior Staff Architect, MindShare, Inc.

40.2.2 Atomic Operations — Goal:

Support SMP-type operations across a PCle network to allow for things like offloading tasks between CPU
cores and accelerators like a GPU. The spec says this enables advanced synchronization mechanisms that
are particularly useful with multiple producers or consumers that need to be synchronized in a non-blocking

40.2. Excepts form Overview of Changes to PCI Express 3.0 359

ROCm Documentation, Release 5.7.1

fashion. Three new atomic non-posted requests were added, plus the corresponding completion (the address
must be naturally aligned with the operand size or the TLP is malformed):

e Fetch and Add — uses one operand as the “add” value. Reads the target location, adds the operand,
and then writes the result back to the original location.

e Unconditional Swap — uses one operand as the “swap” value. Reads the target location and then writes
the swap value to it.

e Compare and Swap — uses 2 operands: first data is compare value, second is swap value. Reads the
target location, checks it against the compare value and, if equal, writes the swap value to the target
location.

¢ AtomicOpCompletion — new completion to give the result so far atomic request and indicate that the
atomicity of the transaction has been maintained.

Since AtomicOps are not locked they don’t have the performance downsides of the PCI locked protocol.
Compared to locked cycles, they provide “lower latency, higher scalability, advanced synchronization algo-
rithms, and dramatically lower impact on other PCle traffic” The lock mechanism can still be used across
a bridge to PCI or PCI-X to achieve the desired operation.

AtomicOps can go from device to device, device to host, or host to device. Each completer indicates whether
it supports this capability and guarantees atomic access if it does. The ability to route AtomicOps is also
indicated in the registers for a given port.

40.2.3 ID-based Ordering — Goal:

Improve performance by avoiding stalls caused by ordering rules. For example, posted writes are never
normally allowed to pass each other in a queue, but if they are requested by different functions, we can have
some confidence that the requests are not dependent on each other. The previously reserved Attribute bit
[2] is now combined with the RO bit to indicate ID ordering with or without relaxed ordering.

This only has meaning for memory requests, and is reserved for Configuration or 10 requests. Completers
are not required to copy this bit into a completion, and only use the bit if their enable bit is set for this
operation.

To read more on PCle Gen 3 new options https://www.mindshare.com /files/resources/PCIe%203-0.pdf

360 Chapter 40. How ROCm uses PCle Atomics

https://www.mindshare.com/files/resources/PCIe%203-0.pdf

CHAPTER

FORTYONE

ALL HOW-TO MATERIAL

ROCm using Radeon ROCm and PyTorch installation processes to pair with the Radeon RX 7900 XTX
GPU or the Radeon PRO W7900 GPU, and get started on a fully-functional environment for Al and ML
development.

Tuning Guides Use case-specific system setup and tuning guides.
Deep Learning Guide Installation of various Deep Learning frameworks and applications.
GPU-Enabled MPI This chapter exemplifies how to set up Open MPI with the ROCm platform.
System Debugging Guide Useful commands to debug misbehaving ROCm installations.

361

ROCm Documentation, Release 5.7.1

362 Chapter 41. All How-To Material

CHAPTER

FORTYTWO

TUNING GUIDES

Use case-specific system setup and tuning guides.

42.1 High Performance Computing

High Performance Computing (HPC) workloads have unique requirements. The default hardware and BIOS
configurations for OEM platforms may not provide optimal performance for HPC workloads. To enable
optimal HPC settings on a per-platform and per-workload level, this guide calls out:

e BIOS settings that can impact performance

o Hardware configuration best practices

e Supported versions of operating systems

o Workload-specific recommendations for optimal BIOS and operating system settings

There is also a discussion on the AMD Instinct™ software development environment, including information
on how to install and run the DGEMM, STREAM, HPCG, and HPL benchmarks. This guidance provides
a good starting point but is not exhaustively tested across all compilers.

Prerequisites to understanding this document and to performing tuning of HPC applications include:
e Experience in configuring servers
o Administrative access to the server’s Management Interface (BMC)
o Administrative access to the operating system
o Familiarity with the OEM server’s BMC (strongly recommended)

o Familiarity with the OS specific tools for configuration, monitoring, and troubleshooting (strongly
recommended)

This document provides guidance on tuning systems with various AMD Instinct™ accelerators for HPC
workloads. This document is not an all-inclusive guide, and some items referred to may have similar, but
different, names in various OEM systems (for example, OEM-specific BIOS settings). This document also
provides suggestions on items that should be the initial focus of additional, application-specific tuning.

This document is based on the AMD EPYC™ 7003-series processor family (former codename “Milan”).

While this guide is a good starting point, developers are encouraged to perform their own performance
testing for additional tuning.

AMD Instinct™ MI200 This chapter goes through how to configure your AMD Instinct™ MI200 accelerated
compute nodes to get the best performance out of them.

e Instruction Set Architecture

363

https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf

ROCm Documentation, Release 5.7.1

e Whitepaper
e Guide

AMD Instinct™ MI100 This chapter briefly reviews hardware aspects of the AMD Instinct™ MI100
accelerators and the CDNA™ 1 architecture that is the foundation of these GPUs.

e Instruction Set Architecture
o Whitepaper

e Guide

42.2 Workstation

Workstation workloads, much like High Performance Computing have a unique set of requirements, a blend
of both graphics and compute, certification, stability and the list continues.

The document covers specific software requirements and processes needed to use these GPUs for Single Root
I/0 Virtualization (SR-IOV) and Machine Learning (ML).

The main purpose of this document is to help users utilize the RDNA 2 GPUs to their full potential.

AMD Radeon™ PRO W6000 and V620 This chapter describes the AMD GPUs with RDNA™ 2 architec-
ture, namely AMD Radeon PRO W6800 and AMD Radeon PRO V620

e AMD RDNA2 Instruction Set Architecture
o Whitepaper

e Guide

42.3 MI200 High Performance Computing and Tuning Guide

42.3.1 System Settings

This chapter reviews system settings that are required to configure the system for AMD Instinct M1250
accelerators and improve the performance of the GPUs. It is advised to configure the system for the best
possible host configuration according to the “High Performance Computing (HPC) Tuning Guide for AMD
EPYC 7003 Series Processors.”

Configure the system BIOS settings as explained in System BIOS Settings and enact the below given settings
via the command line as explained in Operating System Settings:

e Core C states

o IOMMU (if needed)

364 Chapter 42. Tuning Guides

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/documents/rdna2-explained-radeon-pro-W6000.pdf

ROCm Documentation, Release 5.7.1

42.3.1.1 System BIOS Settings

For maximum MI250 GPU performance on systems with AMD EPYC™ 7003-series processors (codename
“Milan”) and AMI System BIOS, the following configuration of system BIOS settings has been validated.
These settings must be used for the qualification process and should be set as default values for the system
BIOS. Analogous settings for other non-AMI System BIOS providers could be set similarly. For systems
with Intel processors, some settings may not apply or be available as listed in Table 42.1.

Table 42.1: Recon
GABYTE platforn

BIOS Setting Location

Advanced / PCI Subsystem Settings

Advanced / PCI Subsystem Settings

AMD CBS / CPU Common Options

AMD CBS / CPU Common Options

AMD CBS / CPU Common Options / Performance

AMD CBS / DF Common Options / Memory Addressing

AMD CBS / DF Common Options / Memory Addressing

AMD CBS / DF Common Options / Link

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / NBIO Common Options / SMU Common Options
AMD CBS / UMC Common Options / DDR4 Common Options
AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR
AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR
AMD CBS / UMC Common Options / DDR4 Common Options / DRAM Controller Configuration / DRAM Power Opti
AMD CBS / Security

42.3. MI200 High Performance Computing and Tuning Guide 365

ROCm Documentation, Release 5.7.1

42.3.1.1.1 NBIO Link Clock Frequency

The NBIOs (4x per AMD EPYC™ processor) are the serializers/deserializers (also known as “SerDes”) that
convert and prepare the I/O signals for the processor’s 128 external I/O interface lanes (32 per NBIO).

LCLK (short for link clock frequency) controls the link speed of the internal bus that connects the NBIO
silicon with the data fabric. All data between the processor and its PCle lanes flow to the data fabric based
on these LCLK frequency settings. The link clock frequency of the NBIO components need to be forced to
the maximum frequency for optimal PCle performance.

For AMD EPYC™ 7003 series processors, configuring all NBIOs to be in “Enhanced Preferred I/O” mode
is sufficient to enable highest link clock frequency for the NBIO components.

42.3.1.1.2 Memory Configuration

For setting the memory addressing modes (see Table 42.1), especially the number of NUMA nodes per
socket /processor (NPS), follow the guidance of the “High Performance Computing (HPC) Tuning Guide for
AMD EPYC 7003 Series Processors” to provide the optimal configuration for host side computation. For
most HPC workloads, NPS=4 is the recommended value.

42.3.1.2 Operating System Settings

42.3.1.2.1 CPU Core State - “C States”

There are several Core-States, or C-states that an AMD EPYC CPU can idle within:
e CO0: active. This is the active state while running an application.
e Cl: idle

e (C2: idle and power gated. This is a deeper sleep state and will have a greater latency when moving
back to the CO state, compared to when the CPU is coming out of C1.

Disabling C2 is important for running with a high performance, low-latency network. To disable power-gating
on all cores run the following on Linux systems:

cpupower idle-set -d 2

Note that the cpupower tool must be installed, as it is not part of the base packages of most Linux®
distributions. The package needed varies with the respective Linux distribution.

Ubuntu

sudo apt install linux-tools-common

366 Chapter 42. Tuning Guides

ROCm Documentation, Release 5.7.1

Red Hat Enterprise Linux

sudo yum install cpupowerutils

SUSE Linux Enterprise Server

sudo zypper install cpupower

42.3.1.2.2 AMD-IOPM-UTIL

This section applies to AMD EPYC™ 7002 processors to optimize advanced Dynamic Power Management
(DPM) in the I/0 logic (see NBIO description above) for performance. Certain I/O workloads may benefit
from disabling this power management. This utility disables DPM for all PCI-e root complexes in the system
and locks the logic into the highest performance operational mode.

Disabling I/O DPM will reduce the latency and/or improve the throughput of low-bandwidth messages for
PCI-e InfiniBand NICs and GPUs. Other workloads with low-bandwidth bursty PCI-e I/O characteristics
may benefit as well if multiple such PCI-e devices are installed in the system.

The actions of the utility do not persist across reboots. There is no need to change any existing firmware
settings when using this utility. The “Preferred I/0” and “Enhanced Preferred 1/O” settings should remain
unchanged at enabled.

Tip: The recommended method to use the utility is either to create a system start-up script, for example,
a one-shot systemd service unit, or run the utility when starting up a job scheduler on the system. The
installer packages (see Power Management Utility) will create and enable a systemd service unit for you.
This service unit is configured to run in one-shot mode. This means that even when the service unit runs
as expected, the status of the service unit will show inactive. This is the expected behavior when the utility
runs normally. If the service unit shows failed, the utility did not run as expected. The output in either case
can be shown with the systemctl status command.

Stopping the service unit has no effect since the utility does not leave anything running. To undo the effects
of the utility, disable the service unit with the systemctl disable command and reboot the system.

The utility does not have any command-line options, and it must be run with super-user permissions.

42.3.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration

For systems that have 256 logical CPU cores or more (e.g., 64-core AMD EPYC™ 7763 in a dual-socket
configuration and SMT enabled), setting the Input-Output Memory Management Unit (IOMMU) configu-
ration to “disabled” can limit the number of available logical cores to 255. The reason is that the Linux®
kernel disables X2APIC in this case and falls back to Advanced Programmable Interrupt Controller (APIC),
which can only enumerate a maximum of 255 (logical) cores.

If SMT is enabled by setting “CCD/Core/Thread Enablement > SMT Control” to “enable”, the following
steps can be applied to the system to enable all (logical) cores of the system:

e In the server BIOS, set IOMMU to “Enabled”.

e When configuring the Grub boot loader, add the following arguments for the Linux kernel:
amd_ iommu=on iommu=pt

42.3. MI200 High Performance Computing and Tuning Guide 367

https://developer.amd.com/iopm-utility/

ROCm Documentation, Release 5.7.1

e Update Grub to use the modified configuration:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

e Reboot the system.
e Verify IOMMU passthrough mode by inspecting the kernel log via dmesg:

[..]

[0.000000] Kernel command line: [...] amd iommu=on iommu=pt

]

Once the system is properly configured, the AMD ROCm platform can be installed.

42.3.2 System Management
For a complete guide on how to install/manage/uninstall ROCm on Linux, refer to Deploy ROCm on Linux.

For verifying that the installation was successful, refer to Verifying Kernel-mode Driver Installation and
Validation Tools. Should verification fail, consult the System Debugging Guide.

42.3.2.1 Hardware Verification with ROCm
The AMD ROCm™ platform ships with tools to query the system structure. To query the GPU hardware,
the rocm-smi command is available. It can show available GPUs in the system with their device ID and

their respective firmware (or VBIOS) versions:

$ rocm-smi --s

[y]
b=
[=

BUS

0000 :;
0000 :;
0000 :;
00608:32:0C
0060 :
0060 :
0060 :

ooeag

o o

M M m m momomomoon

1
2
3
4
1]
7

Fig. 42.1: rocm-smi --showhw output on an 8*MI200 system.

To see the system structure, the localization of the GPUs in the system, and the fabric connections between
the system components, use:

e The first block of the output shows the distance between the GPUs similar to what the numactl
command outputs for the NUMA domains of a system. The weight is a qualitative measure for the
“distance” data must travel to reach one GPU from another one. While the values do not carry a
special (physical) meaning, the higher the value the more hops are needed to reach the destination
from the source GPU.

e The second block has a matrix named “Hops between two GPUs”, where 1 means the two GPUs are
directly connected with XGMI, 2 means both GPUs are linked to the same CPU socket and GPU

368 Chapter 42. Tuning Guides

ROCm Documentation, Release 5.7.1

$ rocm-smi --s

System Management Interface
Weilght between two GPUs
GPU2 GPU3 (GPUS GPUG
30 :

15
30
45

Hops between two GPUs
GPU2 GPU3

GPU1
XGMI

XGMI
I
1I
I
XGML X
XGMI XGMI XGMI

(Topology)]
(Topology) Numa Affinity:
(Topology) Numa
(Topology) Numa
(Topology) Numa
(Topology) Numa Affinity:
(Topology) Numa Node: ©
{Topology) Muma Affinity:
(Topology) Numa Node: 1
(Topology) Muma Affinity:
(Topology) Numa Node: 1
(Topology) Numa Affinity:
(Topology) Numa
(Topology) Numa Affil
{Topology) Numa Node:
() Numa Affinit
of ROC

Fig. 42.2: rocm-smi --showtopo output on an 8*MI200 system.

42.3. MI200 High Performance Computing and Tuning Guide 369

ROCm Documentation, Release 5.7.1

communications will go through the CPU, and 3 means both GPUs are linked to different CPU sockets
so communications will go through both CPU sockets. This number is one for all GPUs in this case
since they are all connected to each other through the Infinity Fabric links.

e The third block outputs the link types between the GPUs. This can either be “XGMI” for AMD
Infinity Fabric links or “PCIE” for PCle Gen4 links.

e The fourth block reveals the localization of a GPU with respect to the NUMA organization of the
shared memory of the AMD EPYC processors.

To query the compute capabilities of the GPU devices, use rocminfo command. It lists specific details about
the GPU devices, including but not limited to the number of compute units, width of the SIMD pipelines,
memory information, and instruction set architecture:

For a complete list of architecture (LLVM target) names, refer to GPU OS Support.

42.3.2.2 Testing Inter-device Bandwidth

Section 42.4.2.1 showed the rocm-smi --showtopo command to show how the system structure and how
the GPUs are located and connected in this structure. For more details, the rocm-bandwidth-test can run
benchmarks to show the effective link bandwidth between the components of the system.

The ROCm Bandwidth Test program can be installed with the following package-manager commands:

Ubuntu

‘ sudo apt install rocm-bandwidth-test

Red Hat Enterprise Linux

‘ sudo yum install rocm-bandwidth-test

SUSE Linux Enterprise Server

‘ sudo zypper install rocm-bandwidth-test

Alternatively, the source code can be downloaded and built from source.

The output will list the available compute devices (CPUs and GPUs), including their device ID and PCle
1D:

The output will also show a matrix that contains a “1” if a device can communicate to another device (CPU
and GPU) of the system and it will show the NUMA distance (similar to rocm-smi):

The output also contains the measured bandwidth for unidirectional and bidirectional transfers between the
devices (CPU and GPU):

370 Chapter 42. Tuning Guides

https://github.com/RadeonOpenCompute/rocm_bandwidth_test

ROCm Documentation, Release 5.7.1

4 rocminfo
ROCk module 1is loaded

Device Type:
Cache Info:

L1:

L2:
Chip ID:
Cacheline Size:

Max Clock Freg. (MHz):

BDFID:

Internal Node ID:
Compute Unit:
5IMDs per CU:
Shader Engines:

Shader Arrs. per Eng.:

Pool Info:
Pool 1
Segment:
Size:
Allocatable:
Alloc Granule:
Alloc Alignment:

Accessible by all:

ISA Info:
I5A 1
Name :
Machine Models:
Profiles:

&% Done #®*%%

AMD EPYC 7763 64-Core Processor

gfx90a
GPU

16(Bx18) KB
8192(0x2000) KB
29708(0x740c)
64(0x40)
1700
46592
g
104
4
g
1

GLOBAL ; FLAGS: COARSE GRAINED
67092480({0x3ffcoon) KB

TRUE

4KB

4KB

amdgcn-amd-amdhsa--gfx98a:sramecc+: xnack-
H5A_ MACHINE_MODEL_LARGE
H5a PROFILE_BASE

Fig. 42.3: rocminfo output fragment on an 8*MI200 system.

42.3. MI200 High Performance Computing and Tuning Guide

ROCm Documentation, Release 5.7.1

E
E
E
E
E
E
E
E

—

Fig. 42.4: rocm-bandwidth-test output fragment on an 8*MI200 system listing devices.

42.4 MI100 High Performance Computing and Tuning Guide

42.4.1 System Settings

This chapter reviews system settings that are required to configure the system for AMD Instinct™ MI100
accelerators and that can improve performance of the GPUs. It is advised to configure the system for best
possible host configuration according to the “High Performance Computing (HPC) Tuning Guide for AMD
EPYC™ 7002 Series Processors” or “High Performance Computing (HPC) Tuning Guide for AMD EPYC™
7003 Series Processors” depending on the processor generation of the system.

In addition to the BIOS settings listed below the following settings (System BIOS Settings) will also have
to be enacted via the command line (see Operating System Settings):

o Core C states
o AMD-PCI-UTIL (on AMD EPYC™ 7002 series processors)
o IOMMU (if needed)

42.4.1.1 System BIOS Settings

For maximum MI100 GPU performance on systems with AMD EPYC™ 7002 series processors (codename
“Rome”) and AMI System BIOS, the following configuration of System BIOS settings has been validated.
These settings must be used for the qualification process and should be set as default values for the system
BIOS. Analogous settings for other non-AMI System BIOS providers could be set similarly. For systems
with Intel processors, some settings may not apply or be available as listed in Table 42.2.

Table 42.2: Recommended s
GABYTE platform.

BIOS Setting Location
Advanced / PCI Subsystem Settings
AMD CBS / CPU Common Options

372 Chapter 42. Tuning Guides

ROCm Documentation, Release 5.7.1

Table 42.2 — con

BIOS Setting Location

AMD CBS / CPU Common Options

AMD CBS / CPU Common Options / Performance

AMD CBS / DF Common Options / Memory Addressing

AMD CBS / DF Common Options / Memory Addressing

AMD CBS / DF Common Options / Link

AMD CBS / DF Common Options / Link

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / NBIO Common Options / SMU Common Options

AMD CBS / UMC Common Options / DDR4 Common Options

AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR
AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR
AMD CBS / UMC Common Options / DDR4 Common Options / DRAM Controller Configuration / DRAM Power Opti
AMD CBS / Security

42.4.1.1.1 NBIO Link Clock Frequency

The NBIOs (4x per AMD EPYC™ processor) are the serializers/deserializers (also known as “SerDes”) that
convert and prepare the I/O signals for the processor’s 128 external I/O interface lanes (32 per NBIO).

LCLK (short for link clock frequency) controls the link speed of the internal bus that connects the NBIO
silicon with the data fabric. All data between the processor and its PCle lanes flow to the data fabric based
on these LCLK frequency settings. The link clock frequency of the NBIO components need to be forced to
the maximum frequency for optimal PCle performance.

For AMD EPYC™ 7002 series processors, this setting cannot be modified via configuration options in the
server BIOS alone. Instead, the AMD-IOPM-UTIL (see Section 3.2.3) must be run at every server boot to
disable Dynamic Power Management for all PCle Root Complexes and NBIOs within the system and to lock
the logic into the highest performance operational mode.

For AMD EPYC™ 7003 series processors, configuring all NBIOs to be in “Enhanced Preferred 1/O” mode
is sufficient to enable highest link clock frequency for the NBIO components.

42.4. MI100 High Performance Computing and Tuning Guide 373

ROCm Documentation, Release 5.7.1

Huma Distance

Fig. 42.5: rocm-band 3 access matrix

and NUMA dis

2. Tuning Guides

ROCm Documentation, Release 5.7.1

Fig. 42.6: rocm-bandwidth-test output fragment on an 8*MI200 system showing uni- and bidirectional
bandwidths.

42.4. MI100 High Performance Computing and Tuning Guide 375

ROCm Documentation, Release 5.7.1

42.4.1.1.2 Memory Configuration

For the memory addressing modes (see Table 42.2), especially the number of NUMA nodes per
socket /processor (NPS), the recommended setting is to follow the guidance of the “High Performance Com-
puting (HPC) Tuning Guide for AMD EPYC™ 7002 Series Processors” and “High Performance Computing
(HPC) Tuning Guide for AMD EPYC™ 7003 Series Processors” to provide the optimal configuration for
host side computation.

If the system is set to one NUMA domain per socket /processor (NPS1), bidirectional copy bandwidth between
host memory and GPU memory may be slightly higher (up to about 16% more) than with four NUMA
domains per socket processor (NPS4). For memory bandwidth sensitive applications using MPI, NPS4 is
recommended. For applications that are not optimized for NUMA locality, NPS1 is the recommended setting.

42.4.1.2 Operating System Settings

42.4.1.2.1 CPU Core State - “C States”

There are several Core-States, or C-states that an AMD EPYC CPU can idle within:
e CO0: active. This is the active state while running an application.
e C1: idle

e (2: idle and power gated. This is a deeper sleep state and will have a greater latency when moving
back to the CO state, compared to when the CPU is coming out of C1.

Disabling C2 is important for running with a high performance, low-latency network. To disable power-gating
on all cores run the following on Linux systems:

cpupower idle-set -d 2

Note that the cpupower tool must be installed, as it is not part of the base packages of most Linux®
distributions. The package needed varies with the respective Linux distribution.

Ubuntu

sudo apt install linux-tools-common

Red Hat Enterprise Linux

‘ sudo yum install cpupowerutils

SUSE Linux Enterprise Server

‘ sudo zypper install cpupower

376 Chapter 42. Tuning Guides

ROCm Documentation, Release 5.7.1

42.4.1.2.2 AMD-IOPM-UTIL

This section applies to AMD EPYC™ 7002 processors to optimize advanced Dynamic Power Management
(DPM) in the I/0 logic (see NBIO description above) for performance. Certain I/O workloads may benefit
from disabling this power management. This utility disables DPM for all PCI-e root complexes in the system
and locks the logic into the highest performance operational mode.

Disabling I/O DPM will reduce the latency and/or improve the throughput of low-bandwidth messages for
PClI-e InfiniBand NICs and GPUs. Other workloads with low-bandwidth bursty PCI-e I/O characteristics
may benefit as well if multiple such PCI-e devices are installed in the system.

The actions of the utility do not persist across reboots. There is no need to change any existing firmware
settings when using this utility. The “Preferred I/0” and “Enhanced Preferred 1/0” settings should remain
unchanged at enabled.

Tip: The recommended method to use the utility is either to create a system start-up script, for example,
a one-shot systemd service unit, or run the utility when starting up a job scheduler on the system. The
installer packages (see Power Management Utility) will create and enable a systemd service unit for you.
This service unit is configured to run in one-shot mode. This means that even when the service unit runs
as expected, the status of the service unit will show inactive. This is the expected behavior when the utility
runs normally. If the service unit shows failed, the utility did not run as expected. The output in either case
can be shown with the systemctl status command.

Stopping the service unit has no effect since the utility does not leave anything running. To undo the effects
of the utility, disable the service unit with the systemctl disable command and reboot the system.

The utility does not have any command-line options, and it must be run with super-user permissions.

42.4.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration

For systems that have 256 logical CPU cores or more (e.g., 64-core AMD EPYC™ 7763 in a dual-socket
configuration and SMT enabled), setting the Input-Output Memory Management Unit (IOMMU) configu-
ration to “disabled” can limit the number of available logical cores to 255. The reason is that the Linux®
kernel disables X2APIC in this case and falls back to Advanced Programmable Interrupt Controller (APIC),
which can only enumerate a maximum of 255 (logical) cores.

If SMT is enabled by setting “CCD/Core/Thread Enablement > SMT Control” to “enable”, the following
steps can be applied to the system to enable all (logical) cores of the system:

e In the server BIOS, set IOMMU to “Enabled”.

e When configuring the Grub boot loader, add the following arguments for the Linux kernel:
amd__iommu=on iommu=pt

e Update Grub to use the modified configuration:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

e Reboot the system.
e Verify IOMMU passthrough mode by inspecting the kernel log via dmesg:

[0.000000] Kernel command line: [...] amd_iommu=on iommu=pt

]

42.4. MI100 High Performance Computing and Tuning Guide 377

https://developer.amd.com/iopm-utility/

ROCm Documentation, Release 5.7.1

Once the system is properly configured, the AMD ROCm platform can be installed.

42.4.2 System Management

For a complete guide on how to install/manage/uninstall ROCm on Linux, refer to Deploy ROCm on Linux.
For verifying that the installation was successful, refer to Verifying Kernel-mode Driver Installation and
Validation Tools. Should verification fail, consult the System Debugging Guide.

42.4.2.1 Hardware Verification with ROCm

The AMD ROCm™ platform ships with tools to query the system structure. To query the GPU hardware,
the rocm-smi command is available. It can show available GPUs in the system with their device ID and
their respective firmware (or VBIOS) versions:

Fig. 42.7: rocm-smi --showhw output on an 8*MI100 system.

Another important query is to show the system structure, the localization of the GPUs in the system, and
the fabric connections between the system components:

The previous command shows the system structure in four blocks:

e The first block of the output shows the distance between the GPUs similar to what the numactl
command outputs for the NUMA domains of a system. The weight is a qualitative measure for the
“distance” data must travel to reach one GPU from another one. While the values do not carry a
special (physical) meaning, the higher the value the more hops are needed to reach the destination
from the source GPU.

e The second block has a matrix for the number of hops required to send data from one GPU to another.
For the GPUs in the local hive, this number is one, while for the others it is three (one hop to leave
the hive, one hop across the processors, and one hop within the destination hive).

e The third block outputs the link types between the GPUs. This can either be “XGMI” for AMD
Infinity Fabric™ links or “PCIE” for PCle Gen4 links.

e The fourth block reveals the localization of a GPU with respect to the NUMA organization of the
shared memory of the AMD EPYC™ processors.

To query the compute capabilities of the GPU devices, the rocminfo command is available with the AMD
ROCm™ platform. It lists specific details about the GPU devices, including but not limited to the number
of compute units, width of the SIMD pipelines, memory information, and instruction set architecture:

For a complete list of architecture (LLVM target) names, refer to GPU OS Support.

378 Chapter 42. Tuning Guides

ROCm Documentation, Release 5.7.1

Fig. 42.8: rocm-smi --showtopo output on an 8*MI100 system.

42.4. MI100 High Performance Computing and Tuning Guide 379

ROCm Documentation, Release 5.7.1

Fig. 42.9: rocminfo output fragment on an 8*MI100 system.

380 Chapter 42. Tuning Guides

ROCm Documentation, Release 5.7.1

42.4.2.2 Testing Inter-device Bandwidth

Section 42.4.2.1 showed the rocm-smi --showtopo command to show how the system structure and how
the GPUs are located and connected in this structure. For more details, the rocm-bandwidth-test can run
benchmarks to show the effective link bandwidth between the components of the system.

The ROCm Bandwidth Test program can be installed with the following package-manager commands:

Ubuntu

sudo apt install rocm-bandwidth-test

Red Hat Enterprise Linux

sudo yum install rocm-bandwidth-test

SUSE Linux Enterprise Server

sudo zypper install rocm-bandwidth-test

Alternatively, the source code can be downloaded and built from source.

The output will list the available compute devices (CPUs and GPUs):

Fig. 42.10: rocm-bandwidth-test output fragment on an 8*MI100 system listing devices.
The output will also show a matrix that contains a “1” if a device can communicate to another device (CPU
and GPU) of the system and it will show the NUMA distance (similar to rocm-smi):

The output also contains the measured bandwidth for unidirectional and bidirectional transfers between the
devices (CPU and GPU):

42.4. MI100 High Performance Computing and Tuning Guide 381

https://github.com/RadeonOpenCompute/rocm_bandwidth_test

ROCm Documentation, Release 5.7.1

Fig. 42.11: rocm-bandwidth-test output fragment on an 8*MI100 system showing inter-device access matrix.

Inter-Davice Numa Dist

Fig. 42.12: rocm-bandwidth-test output fragment on an 8*MI100 system showing inter-device NUMA dis-
tance.

B.E
[:JI.
3= 8.0
[:JI.
E]I.
.6
B.E
B.E

[=5]

Fig. 42.13: rocm-bandwidth-test output fragment on an 8*MI100 system showing uni- and bidirectional
bandwidths.

382 Chapter 42. Tuning Guides

ROCm Documentation, Release 5.7.1

42.5 RDNA2 Workstation Tuning Guide

42.5.1 System Settings

This chapter reviews system settings that are required to configure the system for ROCm virtualization on
RDNA2-based AMD Radeon™ PRO GPUs. Installing ROCm on Bare Metal follows the routine ROCm

installation procedure.

To enable ROCm virtualization on V620, one has to setup Single Root I/O Virtualization (SR-IOV) in the
BIOS via setting found in the following (System BIOS Settings). A tested configuration can be followed in
(Operating System Settings).

Attention: SR-IOV is supported on V620 and unsupported on W6800.

42.5.1.1 System BIOS Settings

Table 42.3: Settings for the system BIOS in an ASrock platform.

Advanced / North Bridge Configura- | IOMMU En- Input-output Memory Management
tion abled Unit
Advanced / North Bridge Configura- | ACS Enable En- Access Control Service
tion abled
Advanced / PCle/PCI/PnP Configu- | SR-IOV ~ Sup- | En- Single Root I/0O Virtualization
ration port abled
Advanced / ACPT settings PCI AER Sup- | En- Advanced Error Reporting
port abled

To set up the host, update SBIOS to version 1.2a.

42.5.1.2 Operating System Settings

Table 42.4: System Configuration Prerequisites

Server SMC 4124 [AS -4124GS-TNR]
Host OS Ubuntu 20.04.3 LTS

Host Kernel 5.4.0-97-generic

CPU AMD EPYC 7552 48-Core Processor
GPU RDNA2 V620 (D603GLXE)
SBIOS Version SMC_r_1.2a

VBIOS 113-D603GLXE-077

Guest OS 1 Ubuntu 20.04.5 LTS

Guest OS 2 RHEL 9.0

GIM Driver gim-dkms_ 1.0.0.1234577_ all
VM CPU Cores | 32

VM RAM 64 GB

Install the following Kernel-based Virtual Machine (KVM) Hypervisor packages:

42.5. RDNA2 Workstation Tuning Guide 383

https://www.supermicro.com/en/Aplus/system/4U/4124/AS-4124GS-TNR.cfm

ROCm Documentation, Release 5.7.1

sudo apt-get -y install gemu-kvm gemu-utils bridge-utils virt-manager girl.2-spiceclientgtk* girl.2-spice-client-
< gtk* libvirt-daemon-system dnsmasq-base
sudo virsh net-start default /*to enable Virtual network by default

Enable IOMMU in GRUB settings by adding the following line to /etc/default/grub:

GRUB__CMDLINE_LINUX_DEFAULT="quiet splash amd_ iommu=on” for AMD CPU

Update grub and reboot

sudo update=grub
sudo reboot

Install the GPU-IOV Module (GIM, where IOV is I/O Virtualization) driver and follow the steps below. To
obtain the GIM driver, write to us here:

sudo dpkg -i <gim_ driver>

sudo reboot

Load Host Driver to Create 1VF
sudo modprobe gim vi num=1

Note: If GIM driver loaded successfully, we could see ”gim info:(gim__init:213) *****Running GIM*****»

in
—dmesg

Ispci -d 1002:

Which should output something like:

01:00.0 PCI bridge: Advanced Micro Devices, Inc. [AMD/ATI] Device 1478

02:00.0 PCI bridge: Advanced Micro Devices, Inc. [AMD/ATI] Device 1479

03:00.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 73al
03:02.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 73ae — VF

42.5.1.3 Guest OS installation

First, assign GPU virtual function (VF) to VM using the following steps.
1. Shut down the VM.
2. Run virt-manager
3. In the Virtual Machine Manager GUI, select the VM and click Open.
4. In the VM GUI, go to Show Virtual Hardware Details > Add Hardware to configure hardware.
5. Go to Add Hardware > PCI Host Device > VF and click Finish.
Then start the VM.

Finally install ROCm on the virtual machine (VM). For detailed instructions, refer to the ROCm Installation
Guide. For any issue encountered during installation, write to us here.

384 Chapter 42. Tuning Guides

mailto:CloudGPUsupport@amd.com
mailto:CloudGPUsupport@amd.com

ROCm Documentation, Release 5.7.1

& Virtual Machine Manager@ixt-sjc2-55
File Edit view Help

e |= open

MName

= DQEMUMENVM

vm 1l
Shutoff

Fig. 42.14: Virtual Machine Manager

B vmil on QEMUKVM@ixt-sjc2-55

File Wirtual Machine View Send Key

- | O

05 information
Performance
CPUs
Memary

Boot Options
IDE Disk 1
IDE COROM 1
NIC :65:08:b3
Tablet

Mouse
Keyboard
D Display Spice

E‘ sound iché

i serial 1

& Channel spice
B rci 0000:03:02.0
O Video QXL

H Controller USB O
B controller Pci 0
— |

=
=
o
=
&
¥
R
[

Add Hardware

- B

Name:

i
Status:

Title:

XML

Basic Details

vml

4200bb6c-8620-44fe-b6fd-agbobdf46581
B shutoff (Destroyed)

Description:

Hypervisor Details

Hypervisor: KM
Architecture: x86_64

Emulator:
Chipset:

Firmware:

jusribin/gemu-system-x86_64
440F X
BIOS

Fig. 42.15: Virtual Machine Manager

42.5. RDNA2 Workstation Tuning Guide

385

ROCm Documentation, Release 5.7.1

W Acdd New Vinual Hardwareist-sic2 - 55

o

B controller

< Network Dretails XML

& nput

D craphics e e e
B sound 0000:00:18:3 Advanced Micro Devices, inc. [AMD] Starship Device 24; Function 3
& Serial O000:00:18:4 Advanced Micro Devices, inc. [AMD] Starship Device 24; Function 4
| Parallel 0000:00:18:3 Advanced Micro Devices, inc. [AMD] Starship Device 24; Function 3
‘l Console 0000:00:18:6 Advanced Micro Devices, Inc. [AMD] Starship Device 24; Function &

0000:00:18: 7 Advanced Micro Devices, Inc. [AMD] Starship Device 24; Function 7 e it 1505 famd o TORT:
0000:00:19:0 Advanced Micro Devices, Inc. [AMD) Starship Device 24; Function ¢ | 0000 0FC bridpe: Adhancad Micrs Devices, foe. [AMIATT] Device 1478
0000:00:1%:1 Advanced Micro Devices, Inc. [AMD] Starship Device 24; Function 1 023000 P brisdpe: Advancad Mure avices, hoc. [AMIVATY] Devica 14798

- 0000:00:1%:2 Advanced Micro Devices, Inc., [AMD] Starship Device 24: Function 2 00:00.0 Displgy cemralier; ddvonced Micre Devices, boc. [AMDATIF Bevice Mal

B watchdog 0000:00:19:3 Advanced Micro Devices, Ing. [AMD) Starship Device 24; Function 3 03:02.0 Ditplqy coneraller: ddvanced Micre Devices, Inc. [AMIVATI Device Tiar — FE
B Filesystem 0000:00:19:4 Advanced Micro Devices, Inc, [AMD] Starship Device 24; Function 4

= Smartcand 0000:00:19:5 Advanced Micro Devices, Inc, [AMD] Starship Device 24; Function 5

@ use Redirection 0000:00:19:6 Advanced Micro Devices, Inc. [AMD] Starship Device 24; Function &

g tem 0000:00:19: 7 Advanced Micro Devices, Inc. [AMD] Starship Device 24: Function 7

£ RNG ac 4

& Panic Notifier

& Virbo VS0CK

. Ine. [AMD] StarshipfMatisee PCle Dummy Function

Fig. 42.16: VF Selection

386 Chapter 42. Tuning Guides

CHAPTER

FORTYTHREE

DEEP LEARNING GUIDE

The following sections cover the different framework installations for ROCm and Deep Learning applications.
Fig. 43.1 provides the sequential flow for the use of each framework. Refer to the ROCm Compatible
Frameworks Release Notes for each framework’s most current release notes at Deep Learning.

AMDZD1 FRAMEWORKS INSTALLATION
RO c For Deep Learning Applications
M

Installing
TensorFlow

Using MAGMA
For PyTorch

Build From
Package Docker Image Docker File

|W

Test Installation

Test Installation

Run Basic
Example

Fig. 43.1: ROCm Compatible Frameworks Flowchart

387

ROCm Documentation, Release 5.7.1

43.1 Frameworks Installation

o How to Install PyTorch?
e How to Install Tensorflow?

e How to Install Magma?

43.2 Magma Installation for ROCm

43.2.1 MAGMA for ROCm

Matrix Algebra on GPU and Multi-core Architectures, abbreviated as MAGMA, is a collection of next-
generation dense linear algebra libraries that is designed for heterogeneous architectures, such as multiple
GPUs and multi- or many-core CPUs.

MAGMA provides implementations for CUDA, HIP, Intel Xeon Phi, and OpenCL™. For more information,
refer to https://icl.utk.edu/magma/index.html.

43.2.1.1 Using MAGMA for PyTorch

Tensor is fundamental to Deep Learning techniques because it provides extensive representational function-
alities and math operations. This data structure is represented as a multidimensional matrix. MAGMA
accelerates tensor operations with a variety of solutions including driver routines, computational routines,
BLAS routines, auxiliary routines, and utility routines.

43.2.1.2 Build MAGMA from Source

To build MAGMA from the source, follow these steps:

1. In the event you want to compile only for your uarch, use:

export PYTORCH ROCM ARCH=<uarch>

<uarch> is the architecture reported by the rocminfo command.

2. Use the following:

export PYTORCH ROCM ARCH=<uarch>

7install” hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
Fixes memory leaks of magma found while executing linalg UTs
git checkout 5959b8783e45f1809812ed96ae762{38ee701972
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl--enable-new-dtags -W1,--rpath, /opt/rocm/lib -W1,--rpath,$(MKLROOT) /lib -Wl,--rpath,
< /opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256" >> make.inc
export PATH="${PATH}:/opt/rocm/bin”
if [[-n 7$PYTORCH_ROCM__ARCH?” |]; then
amdgpu_ targets="echo $SPYTORCH_ROCM_ARCH | sed 's/;/ /g"

(continues on next page)

388 Chapter 43. Deep Learning Guide

https://icl.utk.edu/magma/index.html

ROCm Documentation, Release 5.7.1

(continued from previous page)

else
amdgpu_targets='rocm_ agent__enumerator | grep -v gfx000 | sort -u | xargs’
fi
for arch in $amdgpu_ targets; do
echo "DEVCCFLAGS 4= --amdgpu-target=$arch” >> make.inc
done
hipce with openmp flag may cause isnan() on ___device___ not to be found; depending on context,
—compiler may attempt to match with host definition
sed -i 's/"FOPENMP /#FOPENMP /g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
popd
mv magma /opt/rocm

43.2.2 References

C. Szegedy, V. Vanhoucke, S. Toffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for
Computer Vision,” CoRR, p. abs/1512.00567, 2015

PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html

PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_vision inception v3/

Stanford, [Online]. Available: http://cs231n.stanford.edu/

Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross entropy

AMD, “ROCm issues,” [Online]. Available: https://github.com/RadeonOpenCompute/ROCm /issues
PyTorch, [Online image]. https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
TensorFlow, [Online image]. https://www.tensorflow.org/extras/tensorflow brand guidelines.pdf
MAGMA, [Online image]. https://bitbucket.org/icl/magma/src/master/docs/

Advanced Micro Devices, Inc., [Online]. Available: https://rocmsoftwareplatform.github.io/
AMDMIGraphX/doc/html/

Advanced Micro Devices, Inc., [Online]. Awailable: https://github.com/ROCmSoftwarePlatform/
AMDMIGraphX /wiki

Docker, [Online]. https://docs.docker.com/get-started /overview/

Torchvision, [Online]. Available https://pytorch.org/vision/master/index.html?highlight=torchvision#
module-torchvision

43.3 PyTorch Installation for ROCm

43.3.1 PyTorch
PyTorch is an open source Machine Learning Python library, primarily differentiated by Tensor computing
with GPU acceleration and a type-based automatic differentiation. Other advanced features include:

e Support for distributed training

e Native ONNX support

43.3. PyTorch Installation for ROCm 389

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Cross_entropy
https://github.com/RadeonOpenCompute/ROCm/issues
https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf
https://bitbucket.org/icl/magma/src/master/docs/
https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/
https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki
https://docs.docker.com/get-started/overview/
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision

ROCm Documentation, Release 5.7.1

e C++ front-end
e The ability to deploy at scale using TorchServe
e A production-ready deployment mechanism through TorchScript

43.3.1.1 Installing PyTorch

To install ROCm on bare metal, refer to the sections GPU and OS Support (Linux) and Compatibility for
hardware, software and 3rd-party framework compatibility between ROCm and PyTorch. The recommended
option to get a PyTorch environment is through Docker. However, installing the PyTorch wheels package
on bare metal is also supported.

43.3.1.1.1 Option 1 (Recommended): Use Docker Image with PyTorch Pre-Installed

Using Docker gives you portability and access to a prebuilt Docker container that has been rigorously tested
within AMD. This might also save on the compilation time and should perform as it did when tested without
facing potential installation issues.

Follow these steps:
1. Pull the latest public PyTorch Docker image.

docker pull rocm/pytorch:latest

Optionally, you may download a specific and supported configuration with different user-space ROCm
versions, PyTorch versions, and supported operating systems. To download the PyTorch Docker image,
refer to https://hub.docker.com/r/rocm/pytorch.

2. Start a Docker container using the downloaded image.

docker run -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/
—dev/dri --group-add video --ipc=host --shm-size 8G rocm/pytorch:latest

Note: This will automatically download the image if it does not exist on the host. You can also pass
the -v argument to mount any data directories from the host onto the container.

43.3.1.1.2 Option 2: Install PyTorch Using Wheels Package

PyTorch supports the ROCm platform by providing tested wheels packages. To access this feature, re-
fer to https://pytorch.org/get-started /locally/. For the correct wheels command, you must select ‘Linux’,
‘Python’, ‘pip’, and ‘ROCm’ in the matrix.

To install PyTorch using the wheels package, follow these installation steps:

1. Choose one of the following options: a. Obtain a base Docker image with the correct user-space ROCm
version installed from https://hub.docker.com/repository/docker/rocm/dev-ubuntu-20.04.

or

b. Download a base OS Docker image and install ROCm following the installation directions in the
section Installation. ROCm 5.2 is installed in this example, as supported by the installation matrix
from https://pytorch.org/.

or

390 Chapter 43. Deep Learning Guide

https://hub.docker.com/r/rocm/pytorch
https://pytorch.org/get-started/locally/
https://hub.docker.com/repository/docker/rocm/dev-ubuntu-20.04
https://pytorch.org/

ROCm Documentation, Release 5.7.1

c. Install on bare metal. Skip to Step 3.

docker run -it --device=/dev/kfd --device=/dev/dri --group-add video rocm/dev-ubuntu-20.04:latest

2. Start the Docker container, if not installing on bare metal.

docker run -it --device=/dev/kfd --device=/dev/dri --group-add video rocm/dev-ubuntu-20.04:latest

3. Install any dependencies needed for installing the wheels package.

sudo apt update
sudo apt install libjpeg-dev python3-dev
pip3 install wheel setuptools

4. Install torch, torchvision, and torchaudio as specified by the installation matrix.

Note: ROCm 5.2 PyTorch wheel in the command below is shown for reference.

pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/
—rocmb.2/

43.3.1.1.3 Option 3: Install PyTorch Using PyTorch ROCm Base Docker Image

A prebuilt base Docker image is used to build PyTorch in this option. The base Docker has all dependencies
installed, including:

e ROCm

o Torchvision

o Conda packages

e Compiler toolchain

Additionally, a particular environment flag (BUILD _ENVIRONMENT) is set, and the build scripts utilize
that to determine the build environment configuration.

Follow these steps:
1. Obtain the Docker image.

docker pull rocm/pytorch:latest-base

The above will download the base container, which does not contain PyTorch.

2. Start a Docker container using the image.

docker run -it --cap-add=SYS_ PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/
—dev/dri --group-add video --ipc=host --shm-size 8G rocm/pytorch:latest-base

You can also pass the -v argument to mount any data directories from the host onto the container.

3. Clone the PyTorch repository.

cd ~

git clone https://github.com/pytorch/pytorch.git
cd pytorch

git submodule update --init --recursive

43.3. PyTorch Installation for ROCm 391

ROCm Documentation, Release 5.7.1

4. Build PyTorch for ROCm.

Note: By default in the rocm/pytorch:latest-base, PyTorch builds for these architectures simultane-
ously:

gfx900
fx906
gfx908
gfx90a
efx1030

5. To determine your AMD uarch, run:

rocminfo | grep gfx

6. In the event you want to compile only for your uarch, use:

export PYTORCH ROCM_ARCH=<uarch>

<uarch> is the architecture reported by the rocminfo command.

7. Build PyTorch using the following command:

./.jenkins/pytorch/build.sh

This will first convert PyTorch sources for HIP compatibility and build the PyTorch framework.

8. Alternatively, build PyTorch by issuing the following commands:

python3 tools/amd_ build/build__amd.py
USE_ROCM=1 MAX_ JOBS=4 python3 setup.py install --user

43.3.1.1.4 Option 4: Install Using PyTorch Upstream Docker File

Instead of using a prebuilt base Docker image, you can build a custom base Docker image using scripts from
the PyTorch repository. This will utilize a standard Docker image from operating system maintainers and
install all the dependencies required to build PyTorch, including

¢ ROCm

e Torchvision

e Conda packages

e Compiler toolchain

Follow these steps:

1. Clone the PyTorch repository on the host.

cd ~

git clone https://github.com/pytorch/pytorch.git
cd pytorch

git submodule update --init --recursive

2. Build the PyTorch Docker image.

392

Chapter 43. Deep Learning Guide

ROCm Documentation, Release 5.7.1

cd.circleci/docker
./build.sh pytorch-linux-bionic-rocm<version>-py3.7
eg. ./build.sh pytorch-linux-bionic-rocm3.10-py3.7

7

This should be complete with a message “Successfully build <image_id>

3. Start a Docker container using the image:

docker run -it --cap-add=SYS_ PTRACE --security-opt
seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add
video --ipc=host --shm-size 8G <image_ id>

You can also pass -v argument to mount any data directories from the host onto the container.

4. Clone the PyTorch repository.

cd ~

git clone https://github.com/pytorch/pytorch.git
cd pytorch

git submodule update --init --recursive

5. Build PyTorch for ROCm.

Note: By default in the rocm/pytorch:latest-base, PyTorch builds for these architectures simultane-
ously:

o gfx900
o gfx906
o gfx908
o gfx90a
« gfx1030

6. To determine your AMD uarch, run:

rocminfo | grep gfx

7. If you want to compile only for your uarch:

export PYTORCH ROCM ARCH=<uarch>

<uarch> is the architecture reported by the rocminfo command.

8. Build PyTorch using:

./.jenkins/pytorch/build.sh

This will first convert PyTorch sources to be HIP compatible and then build the PyTorch framework.
Alternatively, build PyTorch by issuing the following commands:

python3 tools/amd__build/build__amd.py
USE ROCM=1 MAX JOBS=4 python3 setup.py install --user

43.3. PyTorch Installation for ROCm 393

ROCm Documentation, Release 5.7.1

43.3.1.2 Test the PyTorch Installation

You can use PyTorch unit tests to validate a PyTorch installation. If using a prebuilt PyTorch Docker image
from AMD ROCm DockerHub or installing an official wheels package, these tests are already run on those
configurations. Alternatively, you can manually run the unit tests to validate the PyTorch installation fully.

Follow these steps:
1. Test if PyTorch is installed and accessible by importing the torch package in Python.

Note: Do not run in the PyTorch git folder.

python3 -c 'import torch' 2> /dev/null && echo 'Success' || echo 'Failure'

2. Test if the GPU is accessible from PyTorch. In the PyTorch framework, torch.cuda is a generic
mechanism to access the GPU; it will access an AMD GPU only if available.

python3 -c 'import torch; print(torch.cuda.is_available())'

3. Run the unit tests to validate the PyTorch installation fully. Run the following command from the
PyTorch home directory:

BUILD ENVIRONMENT=${BUILD ENVIRONMENT:-rocm} ./.jenkins/pytorch/test.sh

This ensures that even for wheel installs in a non-controlled environment, the required environment
variable will be set to skip certain unit tests for ROCm.

Note: Make sure the PyTorch source code is corresponding to the PyTorch wheel or installation in
the Docker image. Incompatible PyTorch source code might give errors when running the unit tests.

This will first install some dependencies, such as a supported torchvision version for PyTorch. torchvi-
sion is used in some PyTorch tests for loading models. Next, this will run all the unit tests.

Note: Some tests may be skipped, as appropriate, based on your system configuration. All features
of PyTorch are not supported on ROCm, and the tests that evaluate these features are skipped. In
addition, depending on the host memory, or the number of available GPUs, other tests may be skipped.
No test should fail if the compilation and installation are correct.

4. Run individual unit tests with the following command:

PYTORCH TEST WITH ROCM=1 python3 test/test_nn.py --verbose

test_nn.py can be replaced with any other test set.

394 Chapter 43. Deep Learning Guide

ROCm Documentation, Release 5.7.1

43.3.1.3 Run a Basic PyTorch Example

The PyTorch examples repository provides basic examples that exercise the functionality of the framework.
MNIST (Modified National Institute of Standards and Technology) database is a collection of handwritten
digits that may be used to train a Convolutional Neural Network for handwriting recognition. Alternatively,
ImageNet is a database of images used to train a network for visual object recognition.

Follow these steps:
1. Clone the PyTorch examples repository.

git clone https://github.com/pytorch/examples.git

2. Run the MNIST example.

cd examples/mnist

3. Follow the instructions in the README file in this folder. In this case:

pip3 install -r requirements.txt
python3 main.py

4. Run the ImageNet example.

cd examples/imagenet

5. Follow the instructions in the README file in this folder. In this case:

pip3 install -r requirements.txt
python3 main.py

43.3.2 Using MIOpen kdb files with ROCm PyTorch wheels

PyTorch uses MIOpen for machine learning primitives. These primitives are compiled into kernels at runtime.
Runtime compilation causes a small warm-up phase when starting PyTorch. MIOpen kdb files contain
precompiled kernels that can speed up the warm-up phase of an application. More information is available
in the MIOpeninstallation page.

MIOpen kdb files can be used with ROCm PyTorch wheels. However, the kdb files need to be placed in a
specific location with respect to the PyTorch installation path. A helper script simplifies this task for the
user. The script takes in the ROCm version and user’s GPU architecture as inputs, and works for Ubuntu
and CentOS.

Helper script: install _kdb_files for pytorch wheels.sh
Usage:
After installing ROCm PyTorch wheels:

1. [Optional] export GFX_ARCH=gfx90a

2. [Optional] export ROCM_ VERSION=5.5

3. ./install _kdb_files for pytorch wheels.sh

43.3. PyTorch Installation for ROCm 395

https://rocm.docs.amd.com/projects/MIOpen/en/latest/install.html
https://raw.githubusercontent.com/wiki/ROCmSoftwarePlatform/pytorch/files/install_kdb_files_for_pytorch_wheels.sh

ROCm Documentation, Release 5.7.1

43.3.3 References

C. Szegedy, V. Vanhoucke, S. Toffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for
Computer Vision,” CoRR, p. abs/1512.00567, 2015

PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html

PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_vision inception_v3/

Stanford, [Online]. Available: http://cs231n.stanford.edu/

Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross entropy

AMD, “ROCm issues,” [Online]. Available: https://github.com/RadeonOpenCompute/ROCm /issues
PyTorch, [Online image]. https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
TensorFlow, [Online image]. https://www.tensorflow.org/extras/tensorflow brand guidelines.pdf
MAGMA, [Online image]. https://bitbucket.org/icl/magma/src/master/docs/

Advanced Micro Devices, Inc., [Online]. Available: https://rocmsoftwareplatform.github.io/
AMDMIGraphX/doc/html/

Advanced Micro Devices, Inc., [Online]. Awailable: https://github.com/ROCmSoftwarePlatform/
AMDMIGraphX /wiki

Docker, [Online]. https://docs.docker.com/get-started/overview/

Torchvision, [Online]. Available https://pytorch.org/vision/master/index.html?highlight=torchvision#
module-torchvision

43.4 TensorFlow Installation for ROCm

43.4.1 TensorFlow

TensorFlow is an open source library for solving Machine Learning, Deep Learning, and Artificial Intelligence
problems. It can be used to solve many problems across different sectors and industries but primarily focuses
on training and inference in neural networks. It is one of the most popular and in-demand frameworks and
is very active in open source contribution and development.

Warning: ROCm 5.6 and 5.7 deviates from the standard practice of supporting the last three TensorFlow
versions. This is due to incompatibilities between earlier TensorFlow versions and changes introduced in
the ROCm 5.6 compiler. Refer to the following version support matrix:

ROCm TensorFlow

5.6.x 2.12

5.7.0 2.12, 2.13

Post-5.7.0 | Last three versions at ROCm release.

396 Chapter 43. Deep Learning Guide

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Cross_entropy
https://github.com/RadeonOpenCompute/ROCm/issues
https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf
https://bitbucket.org/icl/magma/src/master/docs/
https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/
https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki
https://docs.docker.com/get-started/overview/
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision

ROCm Documentation, Release 5.7.1

43.4.1.1 Installing TensorFlow

The following sections contain options for installing TensorFlow.

43.4.1.1.1 Option 1: Install TensorFlow Using Docker Image

To install ROCm on bare metal, follow the section Installation (Linux). The recommended option to get a
TensorFlow environment is through Docker.

Using Docker provides portability and access to a prebuilt Docker container that has been rigorously tested
within AMD. This might also save compilation time and should perform as tested without facing potential
installation issues. Follow these steps:

1. Pull the latest public TensorFlow Docker image.

docker pull rocm/tensorflow:latest

2. Once you have pulled the image, run it by using the command below:

docker run -it --network=host --device=/dev/kfd --device=/dev/dri \
--ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined rocm/tensorflow:latest

43.4.1.1.2 Option 2: Install TensorFlow Using Wheels Package

To install TensorFlow using the wheels package, follow these steps:

1. Check the Python version.

python3 --version

If: Then:
The Python version is less than 3.7 Upgrade Python.
The Python version is more than 3.7 | Skip this step and go to Step 3.

Note: The supported Python versions are:
o« 3.7
e 3.8
e« 3.9
e 3.10

sudo apt-get install python3.7 # or python3.8 or python 3.9 or python 3.10

2. Set up multiple Python versions using update-alternatives.

update-alternatives --query python3
sudo update-alternatives --install
/usr/bin/python3 python3 /usr/bin/python|version| [priority]

43.4. TensorFlow Installation for ROCm 397

ROCm Documentation, Release 5.7.1

Note: Follow the instruction in Step 2 for incompatible Python versions.

sudo update-alternatives --config python3

3. Follow the screen prompts, and select the Python version installed in Step 2.

4. Install or upgrade PIP.

sudo apt install python3-pip

To install PIP, use the following:

/usr/bin/python|version| -m pip install --upgrade pip

Upgrade PIP for Python version installed in step 2:

sudo pip3 install --upgrade pip

5. Install TensorFlow for the Python version as indicated in Step 2.

‘ /usr/bin/python|version| -m pip install --user tensorflow-rocm==wheel-version| --upgrade

For a valid wheel version for a ROCm release, refer to the instruction below:

‘ sudo apt install rocm-libs rccl

6. Update protobuf to 3.19 or lower.

/usr/bin/python3.7 -m pip install protobuf=3.19.0
sudo pip3 install tensorflow

7. Set the environment variable PYTHONPATH.

export PYTHONPATH="./.local/lib/python|version]/site-packages:$PYTHONPATH” #Use same python,,
—version as in step 2

8. Install libraries.

sudo apt install rocm-libs rccl

9. Test installation.

python3 -¢ 'import tensorflow' 2> /dev/null && echo 'Success' || echo 'Failure'

Note: For details on tensorflow-rocm wheels and ROCm version compatibility, see:
https://github.com/ROCmSoftwarePlatform/tensorflow-upstream/blob/develop-upstream/rocm__
docs/tensorflow-rocm-release.md

398 Chapter 43. Deep Learning Guide

https://github.com/ROCmSoftwarePlatform/tensorflow-upstream/blob/develop-upstream/rocm_docs/tensorflow-rocm-release.md
https://github.com/ROCmSoftwarePlatform/tensorflow-upstream/blob/develop-upstream/rocm_docs/tensorflow-rocm-release.md

ROCm Documentation, Release 5.7.1

43.4.1.2 Test the TensorFlow Installation

To test the installation of TensorFlow, run the container image as specified in the previous section Installing
TensorFlow. Ensure you have access to the Python shell in the Docker container.

python3 -c 'import tensorflow' 2> /dev/null && echo ‘Success’ || echo ‘Failure’

43.4.1.3 Run a Basic TensorFlow Example

The TensorFlow examples repository provides basic examples that exercise the framework’s functionality.
The MNIST database is a collection of handwritten digits that may be used to train a Convolutional Neural
Network for handwriting recognition.

Follow these steps:

1. Clone the TensorFlow example repository.

cd ~
git clone https://github.com/tensorflow/models.git

2. Install the dependencies of the code, and run the code.

#pip3 install requirement.txt
#python mnist_ tf.py

43.4.2 References

C. Szegedy, V. Vanhoucke, S. Toffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for
Computer Vision,” CoRR, p. abs/1512.00567, 2015

PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html

PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_vision inception_v3/

Stanford, [Online]. Available: http://cs231n.stanford.edu/

Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross_entropy

AMD, “ROCm issues,” [Online]. Available: https://github.com/RadeonOpenCompute/ROCm /issues
PyTorch, [Online image]. https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
TensorFlow, [Online image]. https://www.tensorflow.org/extras/tensorflow brand guidelines.pdf
MAGMA, [Online image|. https://bitbucket.org/icl/magma/src/master/docs/

Advanced Micro Devices, Inc., [Online]. Available: https://rocmsoftwareplatform.github.io/
AMDMIGraphX/doc/html/

Advanced Micro Devices, Inc., [Online]. Available: https://github.com/ROCmSoftwarePlatform/
AMDMIGraphX /wiki

Docker, [Online]. https://docs.docker.com/get-started /overview/

Torchvision, [Online]. Available https://pytorch.org/vision/master/index.html?highlight=torchvision#
module-torchvision

43.4. TensorFlow Installation for ROCm 399

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Cross_entropy
https://github.com/RadeonOpenCompute/ROCm/issues
https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf
https://bitbucket.org/icl/magma/src/master/docs/
https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/
https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki
https://docs.docker.com/get-started/overview/
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision

ROCm Documentation, Release 5.7.1

400 Chapter 43. Deep Learning Guide

CHAPTER

FORTYFOUR

GPU-ENABLED MPI

The Message Passing Interface (MPT) is a standard API for distributed and parallel application development
that can scale to multi-node clusters. To facilitate the porting of applications to clusters with GPUs, ROCm
enables various technologies. These technologies allow users to directly use GPU pointers in MPI calls
and enable ROCm-aware MPI libraries to deliver optimal performance for both intra-node and inter-node
GPU-to-GPU communication.

The AMD kernel driver exposes Remote Direct Memory Access (RDMA) through the PeerDirect interfaces
to allow Host Channel Adapters (HCA, a type of Network Interface Card or NIC) to directly read and
write to the GPU device memory with RDMA capabilities. These interfaces are currently registered as a
peer__memory_ client with Mellanox’s OpenFabrics Enterprise Distribution (OFED) ib__core kernel module
to allow high-speed DMA transfers between GPU and HCA. These interfaces are used to optimize inter-node
MPI message communication.

This chapter exemplifies how to set up Open MPI with the ROCm platform. The Open MPI project is an
open source implementation of the Message Passing Interface (MPI) that is developed and maintained by a
consortium of academic, research, and industry partners.

Several MPI implementations can be made ROCm-aware by compiling them with Unified Communication
Framework (UCX) support. One notable exception is MVAPICH2: It directly supports AMD GPUs without
using UCX, and you can download it here. Use the latest version of the MVAPICH2-GDR package.

The Unified Communication Framework, is an open source cross-platform framework whose goal is to provide
a common set of communication interfaces that targets a broad set of network programming models and
interfaces. UCX is ROCm-aware, and ROCm technologies are used directly to implement various network
operation primitives. For more details on the UCX design, refer to it’s documentation.

44.1 Building UCX

The following section describes how to set up UCX so it can be used to compile Open MPI. The following
environment variables are set, such that all software components will be installed in the same base directory
(we assume to install them in your home directory; for other locations adjust the below environment variables
accordingly, and make sure you have write permission for that location):

export INSTALL DIR=$HOME/ompi_ for_ gpu
export BUILD DIR=/tmp/ompi_for__gpu_ build
mkdir -p $BUILD DIR

The following sequences of build commands assume either the ROCmCC or the AOMP
compiler is active in the environment, which will execute the commands.

401

https://www.mpi-forum.org
https://www.openucx.org/
https://www.openucx.org/
http://mvapich.cse.ohio-state.edu/downloads/
https://www.openucx.org/documentation

ROCm Documentation, Release 5.7.1

44.2 Install UCX

The next step is to set up UCX by compiling its source code and install it:

export UCX_ DIR=S$INSTALL_ DIR/ucx

cd $BUILD_DIR

git clone https://github.com/openucx/ucx.git -b v1.14.1

cd ucx

./autogen.sh

mkdir build

cd build

../configure -prefix=5UCX_DIR \
--with-rocm=/opt/rocm

make -j $(nproc)

make -j $(nproc) install

The following table documents the compatibility of UCX versions with ROCm versions.

44.3 Install Open MPI

These are the steps to build Open MPI:

export OMPI DIR=$INSTALL DIR/ompi

cd $BUILD__DIR

git clone --recursive https://github.com/open-mpi/ompi.git \
-b v5.0.x

cd ompi

./autogen.pl

mkdir build

cd build

../configure --prefix=SOMPI_DIR --with-ucx=$UCX_ DIR \
--with-rocm=/opt/rocm

make -j $(nproc)

make -j $(nproc) install

44.4 ROCm-enabled OSU

The OSU Micro Benchmarks v5.9 (OMB) can be used to evaluate the performance of various primitives with
an AMD GPU device and ROCm support. This functionality is exposed when configured with --enable-rocm
option. We can use the following steps to compile OMB:

export OSU_DIR=$INSTALL DIR/osu

cd $BUILD_DIR

wget http://mvapich.cse.ohio-state.edu/download /mvapich/osu-micro-benchmarks-5.9.tar.gz

tar xfz osu-micro-benchmarks-5.9.tar.gz

cd osu-micro-benchmarks-5.9

./configure --prefix=$INSTALL DIR /osu --enable-rocm \
--with-rocm=/opt/rocm \
CC=$0OMPI DIR/bin/mpicc CXX=$OMPI DIR/bin/mpicxx \
LDFLAGS="-LSOMPI_DIR/lib/ -lmpi -L/opt/rocm/lib/ \
$(hipconfig -C) -lamdhip64” CXXFLAGS="-std=c++11"

make -j $(nproc)

402 Chapter 44. GPU-Enabled MPI

ROCm Documentation, Release 5.7.1

44.5 Intra-node Run

Before running an Open MPT job, it is essential to set some environment variables to ensure that the correct
version of Open MPI and UCX is being used.

export LD LIBRARY PATH=$OMPI DIR/lib:5UCX_DIR/lib:/opt/rocm/lib
export PATH=$OMPI DIR /bin:$PATH

The following command runs the OSU bandwidth benchmark between the first two GPU devices (i.e., GPU
0 and GPU 1, same OAM) by default inside the same node. It measures the unidirectional bandwidth from
the first device to the other.

$OMPI_DIR/bin/mpirun -np 2 \
-x UCX TLS=sm,self,rocm
--mca pml ucx mpi/pt2pt/osu_bw -d rocm D D

To select different devices, for example 2 and 3, use the following command:

export HIP_ VISIBLE_DEVICES=2,3
export HSA__ENABLE_SDMA=0

The following output shows the effective transfer bandwidth measured for inter-die data transfer between
GPU device 2 and 3 (same OAM). For messages larger than 67MB, an effective utilization of about 150GB /sec
is achieved, which corresponds to 75% of the peak transfer bandwidth of 200GB/sec for that connection:

44.6 Collective Operations

Collective Operations on GPU buffers are best handled through the Unified Collective Communication
Library (UCC) component in Open MPI. For this, the UCC library has to be configured and compiled with
ROCm support.

Please note the compatibility table for UCC versions with the various ROCm versions.

An example for configuring UCC and Open MPI with ROCm support is shown below:

export UCC DIR=SINSTALL DIR/ucc

git clone https://github.com/openucx/ucc.git

cd ucc

./configure --with-rocm=/opt/rocm \
—~with-ucx=$UCX_DIR \
--prefix=5UCC_DIR

make -j && make install

Configure and compile Open MPI with UCX, UCC, and ROCm support
cd ompi
./configure --with-rocm=/opt/rocm \

—with-ucx=5UCX_DIR \

--with-ucc=5UCC_DIR

--prefix=5OMPI DIR

To use the UCC component with an MPI application requires setting some additional parameters:

mpirun --mca pml ucx --mca osc ucx \
--mca coll ucc_enable 1 \
--mca coll__ucc_ priority 100 -np 64 ./my_mpi_app

44.5. Intra-node Run 403

ROCm Documentation, Release 5.7.1

Fig. 44.1: Inter-GPU bandwidth with various payload sizes.

404 Chapter 44. GPU-Enabled MPI

CHAPTER

FORTYFIVE

SYSTEM DEBUGGING GUIDE

45.1 ROCm Language and System Level Debug, Flags, and Environment
Variables

Kernel options to avoid: the Ethernet port getting renamed every time you change graphics cards, net.
ifnames=0 biosdevname=0

45.2 ROCr Error Code

e 2 Invalid Dimension

e 4 Invalid Group Memory

o 8 Invalid (or Null) Code

e 32 Invalid Format

e 64 Group is too large

o 128 Out of VGPRs

« 0x80000000 Debug Options

45.3 Command to Dump Firmware Version and Get Linux Kernel Version

sudo cat /sys/kernel/debug/dri/1/amdgpu_firmware info

uname -a

45.4 Debug Flags

Debug messages when developing/debugging base ROCm driver. You could enable the printing from
libhsakmt.so by setting an environment variable, HSAKMT DEBUG__LEVEL. Available debug levels are
3-7. The higher level you set, the more messages will print.

o export HSAKMT_ DEBUG_LEVEL=3: Only pr_err() prints.
o export HSAKMT_ DEBUG_LEVEL=4: pr_err() and pr_ warn() print.

405

ROCm Documentation, Release 5.7.1

e export HSAKMT_ DEBUG_LEVEL=5 : We currently do not implement “notice”. Setting to 5 is
same as setting to 4.

o export HSAKMT DEBUG_LEVEL=6 : pr_err(), pr_ warn(), and pr_info print.
e export HSAKMT_DEBUG_ LEVEL=7 : Everything including pr_ debug prints.

45.5 ROCr Level Environment Variables for Debug

HSA_ ENABLE SDMA=0

HSA ENABLE INTERRUPT=0
HSA SVM_GUARD_PAGES=0
HSA_DISABLE CACHE=1

45.6 Turn Off Page Retry on GFX9/Vega Devices

sudo -s

echo 1 > /sys/module/amdkfd/parameters/noretry

45.7 HIP Environment Variables 3.x

45.7.1 OpenCL Debug Flags

AMD_OCL_WAIT COMMAND=1 (0 = OFF, 1 = On)

45.8 PCle-Debug

For information on how to debug and profile HIP applications, see HIP Debugging

406 Chapter 45. System Debugging Guide

https://rocm.docs.amd.com/projects/HIP/en/latest/how_to_guides/debugging.html

CHAPTER

FORTYSIX

MACHINE LEARNING, DEEP LEARNING, AND ARTIFICIAL
INTELLIGENCE

Inception V3 with PyTorch A collection of detailed and guided examples for working with Inception V3
with PyTorch on ROCm.

Optimizing Inference with MIGraphX Walkthroughs of optimizing inference using MIGraphX.

46.1 Inception V3 with PyTorch

46.1.1 Deep Learning Training

Deep Learning models are designed to capture the complexity of the problem and the underlying data. These
models are “deep,” comprising multiple component layers. Training is finding the best parameters for each
model layer to achieve a well-defined objective.

The training data consists of input features in supervised learning, similar to what the learned model is
expected to see during the evaluation or inference phase. The target output is also included, which serves to
teach the model. A loss metric is defined as part of training that evaluates the model’s performance during
the training process.

Training also includes the choice of an optimization algorithm that reduces the loss by adjusting the model’s
parameters. Training is an iterative process where training data is fed in, usually split into different batches,
with the entirety of the training data passed during one training epoch. Training usually is run for multiple
epochs.

46.1.2 Training Phases

Training occurs in multiple phases for every batch of training data. Table 46.1 provides an explanation of
the types of training phases.

407

ROCm Documentation, Release 5.7.1

Table 46.1: Types of Training Phases

Types
of
Phases

For- The input features are fed into the model, whose parameters may be randomly initialized
ward initially. Activations (outputs) of each layer are retained during this pass to help in the loss
Pass gradient computation during the backward pass.

Loss The output is compared against the target outputs, and the loss is computed.
Com-
puta-
tion

Back- The loss is propagated backward, and the model’s error gradients are computed and stored for
ward each trainable parameter.

Pass
Opti- The optimization algorithm updates the model parameters using the stored error gradients.
miza-
tion
Pass

Training is different from inference, particularly from the hardware perspective. Table 46.2 shows the contrast
between training and inference.

Table 46.2: Training vs. Inference

Training Inference

Training is measured in hours/days. The inference is measured in minutes.
Training is generally run offline in a data cen- | The inference is made on edge devices.
ter or cloud setting.
The memory requirements for training are | The memory requirements are lower for inference than
higher than inference due to storing inter- | training.

mediate data, such as activations and error
gradients.

Data for training is available on the disk be- | Inference data usually arrive stochastically, which may be
fore the training process and is generally sig- | batched to improve performance. Inference performance
nificant. The training performance is mea- | is generally measured in throughput speed to process the
sured by how fast the data batches can be | batch of data and the delay in responding to the input
processed. (latency).

Different quantization data types are typically chosen between training (FP32, BF16) and inference (FP16,
INTS8). The computation hardware has different specializations from other datatypes, leading to improvement
in performance if a faster datatype can be selected for the corresponding task.

408 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

46.1.3 Case Studies

The following sections contain case studies for the Inception v3 model.

46.1.3.1 Inception v3 with PyTorch

Convolution Neural Networks are forms of artificial neural networks commonly used for image processing.
One of the core layers of such a network is the convolutional layer, which convolves the input with a weight
tensor and passes the result to the next layer. Inception v3' is an architectural development over the
ImageNet competition-winning entry, AlexNet, using more profound and broader networks while attempting
to meet computational and memory budgets.

The implementation uses PyTorch as a framework. This case study utilizes torchvision?, a repository of

popular datasets and model architectures, for obtaining the model. torchvision also provides pre-trained
weights as a starting point to develop new models or fine-tune the model for a new task.

46.1.3.1.1 Evaluating a Pre-Trained Model

The Inception v3 model introduces a simple image classification task with the pre-trained model. This does
not involve training but utilizes an already pre-trained model from torchvision.

This example is adapted from the PyTorch research hub page on Inception v33.
Follow these steps:

1. Run the PyTorch ROCm-based Docker image or refer to the section Installing PyTorch for setting up
a PyTorch environment on ROCm.

docker run -it -v $HOME:/data --cap-add=SYS__PTRACE --security-opt seccomp=unconfined --device=/
—dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 8G rocm/pytorch:latest

2. Run the Python shell and import packages and libraries for model creation.

import torch
import torchvision

3. Set the model in evaluation mode. Evaluation mode directs PyTorch not to store intermediate data,
which would have been used in training.

model = torch.hub.load('pytorch/vision:v0.10.0', 'inception_ v3', pretrained=True)
model.eval()

4. Download a sample image for inference.

import urllib

url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg”, "dog.jpg”)
try: urllib.URLopener().retrieve(url, filename)

except: urllib.request.urlretrieve(url, filename)

5. Import torchvision and PIL.Image support libraries.

1 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,”
CoRR, p. abs/1512.00567, 2015

2 PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html

3 PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_ vision inception_v3/

46.1. Inception V3 with PyTorch 409

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/

ROCm Documentation, Release 5.7.1

10.

from PIL import Image
from torchvision import transforms
input__image = Image.open(filename)

. Apply preprocessing and normalization.

preprocess = transforms.Compose([
transforms.Resize(299),
transforms. CenterCrop(299),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

D

Use input tensors and unsqueeze them later.

input__tensor = preprocess(input__image)
input__batch = input__tensor.unsqueeze(0)
if torch.cuda.is__available():
input_ batch = input_ batch.to('cuda')
model.to('cuda')

Find out probabilities.

with torch.no_ grad():
output = model(input_ batch)
print(output[0])
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)

To understand the probabilities, download and examine the ImageNet labels.

wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_ classes.txt

Read the categories and show the top categories for the image.

with open(”imagenet_ classes.txt”, "r”) as f:
categories = [s.strip() for s in f.readlines()]

top5__prob, top5__catid = torch.topk(probabilities, 5)

for i in range(top5__prob.size(0)):
print(categories[top5_ catid[i]], top5_ prob[i].item())

46.1.3.1.2 Training Inception v3

The previous section focused on downloading and using the Inception v3 model for a simple image classifi-
cation task. This section walks through training the model on a new dataset.

Follow these steps:

1.

Run the PyTorch ROCm Docker image or refer to the section Installing PyTorch for setting up a
PyTorch environment on ROCm.

docker pull rocm/pytorch:latest
docker run -it --cap-add=SYS_ PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/
—»dev/dri --group-add video --ipc=host --shm-size 8G rocm/pytorch:latest

410

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

Download an ImageNet database. For this example, the tiny-imagenet-200%, a smaller ImageNet
variant with 200 image classes and a training dataset with 100,000 images, was downsized to 64x64

color images.

wget http://cs231n.stanford.edu/tiny-imagenet-200.zip

Process the database to set the validation directory to the format expected by PyTorch’s DataLoader.

Run the following script:

import io

import glob

import os

from shutil import move

from os.path import join

from os import listdir, rmdir

target_ folder = './tiny-imagenet-200/val/'

val_dict = {}

with open('./tiny-imagenet-200/val/val annotations.txt', 'r') as f:

for line in f.readlines():

split_line = line.split('\t')
val__dict[split_line[0]] = split_ line[1]

paths = glob.glob('./tiny-imagenet-200/val /images/*")
for path in paths:
file = path.split('/")[-1]
folder = val__dict|[file]
if not os.path.exists(target_ folder + str(folder)):
os.mkdir(target_ folder + str(folder))
os.mkdir(target_ folder + str(folder) + '/images')

for path in paths:
file = path.split('/")[-1]
folder = val__dict[file]
dest = target_folder + str(folder) + '/images/' + str(file)
move(path, dest)

rmdir('. /tiny-imagenet-200/val /images')

Open a Python shell.

Import dependencies, including torch, os, and torchvision.

import torch

import os

import torchvision

from torchvision import transforms

from torchvision.transforms.functional import InterpolationMode

Set parameters to guide the training process.

Note: The device is set to "cuda”. In PyTorch, "cuda” is a generic keyword to denote a GPU.

device = "cuda”

4 Stanford, [Online]. Available: http://cs231n.stanford.edu/

46.1.

Inception V3 with PyTorch

411

http://cs231n.stanford.edu/

ROCm Documentation, Release 5.7.1

10.

Set the data_path to the location of the training and validation data. In this case, the
tiny-imagenet-200 is present as a subdirectory to the current directory.

data_ path = "tiny-imagenet-200”

The training image size is cropped for input into Inception v3.

train_ crop_ size = 299

To smooth the image, use bilinear interpolation, a resampling method that uses the distance weighted
average of the four nearest pixel values to estimate a new pixel value.

interpolation = ”bilinear”

The next parameters control the size to which the validation image is cropped and resized.

val__crop__size = 299
val resize size — 342

The pre-trained Inception v3 model is chosen to be downloaded from torchvision.

model name = "inception_ v3”
pretrained = True

During each training step, a batch of images is processed to compute the loss gradient and perform
the optimization. In the following setting, the size of the batch is determined.

batch size = 32

This refers to the number of CPU threads the data loader uses to perform efficient multi-process data
loading.

num_ workers = 16

The torch.optim package provides methods to adjust the learning rate as the training progresses. This
example uses the StepLLR scheduler, which decays the learning rate by Ir__gamma at every Ir_ step_ size
number of epochs.

learning_ rate = 0.1
momentum = 0.9
weight__decay = le-4
Ir_step_size = 30
Ir_gamma = 0.1

Note: One training epoch is when the neural network passes an entire dataset forward and backward.

epochs = 90

The train and validation directories are determined.

train__dir = os.path.join(data_ path, "train”)
val_dir = os.path.join(data_ path, "val”)

Set up the training and testing data loaders.

412

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

11.

interpolation = InterpolationMode(interpolation)

TRAIN_TRANSFORM_IMG = transforms.Compose(|
Normalizaing and standardardizing the image
transforms.RandomResizedCrop(train__crop_size, interpolation=interpolation),
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])

)
dataset = torchvision.datasets.ImageFolder(
train_ dir,

transform=TRAIN_TRANSFORM_ IMG

TEST TRANSFORM IMG = transforms.Compose([
transforms.Resize(val_resize_size, interpolation=interpolation),
transforms.CenterCrop(val__crop_ size),
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])
)

dataset__test = torchvision.datasets.ImageFolder(
val__dir,
transform=TEST TRANSFORM_IMG

)

print(”Creating data loaders”)
train_sampler = torch.utils.data.RandomSampler(dataset)
test__sampler = torch.utils.data.SequentialSampler(dataset__test)

data_loader = torch.utils.data.DataLoader(
dataset,
batch_ size=batch__ size,
sampler=train_ sampler,
num_ workers=num__workers,
pin__memory="True

)

data_loader_test = torch.utils.data.DataLoader(
dataset__test, batch__size=batch_ size, sampler=test__sampler, num_ workers=num__workers, pin__
—memory="True

)

Note: Use torchvision to obtain the Inception v3 model. Use the pre-trained model weights to speed
up training.

print(”Creating model”)
print("Num classes = 7, len(dataset.classes))
model = torchvision.models. dict [model_name](pretrained=pretrained)

Adapt Inception v3 for the current dataset. tiny-imagenet-200 contains only 200 classes, whereas
Inception v3 is designed for 1,000-class output. The last layer of Inception v3 is replaced to match the
output features required.

46.1.

Inception V3 with PyTorch 413

ROCm Documentation, Release 5.7.1

12.

13.

14.

15.

16.

17.

18.

model.fc = torch.nn.Linear(model.fc.in_ features, len(dataset.classes))
model.aux_ logits = False
model. AuxLogits = None

Move the model to the GPU device.

model.to(device)

Set the loss criteria. For this example, Cross Entropy Loss® is used.

criterion = torch.nn.CrossEntropyLoss()

Set the optimizer to Stochastic Gradient Descent.

optimizer = torch.optim.SGD(
model.parameters(),
Ir=learning_ rate,
momentum=momentum,
weight__decay=weight_ decay

)

Set the learning rate scheduler.

Ir_scheduler = torch.optim.Ir_scheduler.StepLR(optimizer, step_ size=Ir_ step_ size, gamma=Ir__gamma)

Tterate over epochs. Each epoch is a complete pass through the training data.

print(”Start training”)

for epoch in range(epochs):
model.train()
epoch__loss = 0
len dataset = 0

Iterate over steps. The data is processed in batches, and each step passes through a full batch.

for step, (image, target) in enumerate(data_loader):

Pass the image and target to the GPU device.

image, target = image.to(device), target.to(device)

The following is the core training logic:

a. The image is fed into the model.

b. The output is compared with the target in the training data to obtain the loss.
c. This loss is back propagated to all parameters that require optimization.

d. The optimizer updates the parameters based on the selected optimization algorithm.

output = model(image)

loss = criterion(output, target)
optimizer.zero__grad|()
loss.backward()
optimizer.step()

The epoch loss is updated, and the step loss prints.

5 Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross_entropy

414

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

https://en.wikipedia.org/wiki/Cross_entropy

ROCm Documentation, Release 5.7.1

19.

epoch_loss += output.shape[0] * loss.item()
len dataset += output.shape[0];
if step % 10 == 0:

print('Epoch: ', epoch, '| step : " % step, '| train loss : " % loss.item())
epoch_loss = epoch_loss / len_ dataset
print('Epoch: ', epoch, '| train loss : ' % epoch__loss)

The learning rate is updated at the end of each epoch.

Ir__scheduler.step()

After training for the epoch, the model evaluates against the validation dataset.

model.eval()
with torch.inference__mode():
running_loss = 0
for step, (image, target) in enumerate(data_ loader_ test):
image, target = image.to(device), target.to(device)

output = model(image)
loss = criterion(output, target)

running_ loss += loss.item()
running loss = running loss / len(data_loader_test)
print('Epoch: ', epoch, '| test loss : " % running_ loss)

Save the model for use in inferencing tasks.

save model
torch.save(model.state_dict(), "trained inception_ v3.pt”)

Plotting the train and test loss shows both metrics reducing over training epochs. This is demonstrated in
Fig. 46.1.

Inception v3 train and test loss

train

test

Loss
w

Epoch

100

Fig. 46.1: Inception v3 Train and Loss Graph

46.1.

Inception V3 with PyTorch

415

ROCm Documentation, Release 5.7.1

46.1.3.2 Custom Model with CIFAR-10 on PyTorch

The CIFAR-10 (Canadian Institute for Advanced Research) dataset is a subset of the Tiny Images dataset
(which contains 80 million images of 32x32 collected from the Internet) and consists of 60,000 32x32 color
images. The images are labeled with one of 10 mutually exclusive classes: airplane, motor car, bird, cat,
deer, dog, frog, cruise ship, stallion, and truck (but not pickup truck). There are 6,000 images per class,
with 5,000 training and 1,000 testing images per class. Let us prepare a custom model for classifying these
images using the PyTorch framework and go step-by-step as illustrated below.

Follow these steps:

1.

Import dependencies, including torch, os, and torchvision.

import torch

import torchvision

import torchvision.transforms as transforms
import matplotlib.pyplot as plot

import numpy as np

The output of torchvision datasets is PILImage images of range [0, 1]. Transform them to Tensors of
normalized range [-1, 1].

transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

During each training step, a batch of images is processed to compute the loss gradient and perform
the optimization. In the following setting, the size of the batch is determined.

batch size = 4

Download the dataset train and test datasets as follows. Specify the batch size, shuffle the dataset
once, and specify the number of workers to the number of CPU threads used by the data loader to
perform efficient multi-process data loading.

train__set = torchvision.datasets. CIFAR10(root="./data', train=True, download=True,
—transform=transform)

train_loader = torch.utils.data.DataLoader(train_ set, batch_size=batch_ size, shuffle=True, num__
—»workers=2)

Follow the same procedure for the testing set.

test__set = TorchVision.datasets. CIFAR10(root="./data’', train=False, download=True, ,

< transform=transform)

test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_ size, shuffle=False, num_ workers=2)
print ("teast set and test loader”)

Specify the defined classes of images belonging to this dataset.

classes = ('Aeroplane', 'motorcar', 'bird', 'cat', 'deer', 'puppy', 'frog', 'stallion', 'cruise', 'truck')
print(”defined classes”)

Denormalize the images and then iterate over them.

global image_number
image_number = 0
def show__image(img):

(continues on next page)

416

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

10.

11.

(continued from previous page)

global image number
image_number = image_number + 1
img = img / 2 + 0.5 # de-normalizing input image
npimg = img.numpy()
plot.imshow(np.transpose(npimg, (1, 2, 0)))
plot.savefig("fig{ } .jpg”.format(image number))
print(”fig{ }.jpg”.format(image_ number))
plot.show()
data_iter = iter(train loader)
images, labels = data__iter.next()
show__image(torchvision.utils.make__grid(images))
print(" "join('%5s" % classes[labels]j]] for j in range(batch_ size)))
print(”image created and saved 7)

Import the torch.nn for constructing neural networks and torch.nn.functional to use the convolution
functions.

import torch.nn as nn
import torch.nn.functional as F

Define the CNN (Convolution Neural Networks) and relevant activation functions.

class Net(nn.Module):
def _init__ (self):

super().___init__ ()
self.convl = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)

self.pool = nn.MaxPool2d(2, 2)

self.conv3 = nn.Conv2d(3, 6, 5)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):

x = self.pool(F.relu(self.convl(x)))
x = self.pool(F .relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self .fc2(x))
x = self.fe3(x)
return x

net = Net()

print(”created Net() ”)

Set the optimizer to Stochastic Gradient Descent.

import torch.optim as optim

Set the loss criteria. For this example, Cross Entropy Loss®#¢¢ 414 5 is used.

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), Ir=0.001, momentum=0.9)

Tterate over epochs. Each epoch is a complete pass through the training data.

46.1.

Inception V3 with PyTorch 417

ROCm Documentation, Release 5.7.1

for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0

for i, data in enumerate(train_loader, 0):
get the inputs; data is a list of [inputs, labels]
inputs, labels = data

zero the parameter gradients
optimizer.zero_ grad()

forward 4+ backward + optimize
outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward ()

optimizer.step()

print statistics
running loss += loss.item()
if 1 % 2000 == 1999: # print every 2000 mini-batches
print('[7d, %5d] loss: 7%.3f" % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')

PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
print(”saved model to path :”, PATH)
net = Net()

net.load_state_ dict(torch.load(PATH))
print(”loding back saved model”)
outputs = net(images)

_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' "join('%5s" % classes[predicted[j]] for j in range(4)))
correct = 0

total = 0

As this is not training, calculating the gradients for outputs is not required.

calculate outputs by running images through the network
with torch.no_ grad():
for data in test_loader:
images, labels = data
calculate outputs by running images through the network
outputs = net(images)
the class with the highest energy is what you can choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total pred = {classname: 0 for classname in classes}

again no gradients needed
with torch.no_grad():
for data in test loader:
images, labels = data

(continues on next page)

418 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

(continued from previous page)

outputs = net(images)
_, predictions = torch.max(outputs, 1)
collect the correct predictions for each class
for label, prediction in zip(labels, predictions):
if label == prediction:
correct__pred[classes[label]] += 1
total_pred[classes[label]] += 1
print accuracy for each class
for classname, correct_count in correct_ pred.items():
accuracy = 100 * float(correct_count) / total pred[classname]
print(”Accuracy for class is: %?” format(classname,accuracy))

46.1.3.3 Case Study: TensorFlow with Fashion MNIST

Fashion MNIST is a dataset that contains 70,000 grayscale images in 10 categories.

Implement and train a neural network model using the TensorFlow framework to classify images of clothing,
like sneakers and shirts.

The dataset has 60,000 images you will use to train the network and 10,000 to evaluate how accurately the
network learned to classify images. The Fashion MNIST dataset can be accessed via TensorFlow internal
libraries.

Access the source code from the following repository:

https://github.com/ROCmSoftwarePlatform/tensorflow_ fashionmnist/blob/main/fashion_ mnist.py

To understand the code step by step, follow these steps:

1. Import libraries like TensorFlow, NumPy, and Matplotlib to train the neural network and calculate
and plot graphs.
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

2. To verify that TensorFlow is installed, print the version of TensorFlow by using the below print state-
ment:
print(tf.__version__) r

3. Load the dataset from the available internal libraries to analyze and train a neural network upon the
MNIST Fashion Dataset. Loading the dataset returns four NumPy arrays. The model uses the training
set arrays, train_images and train_ labels, to learn.

4. The model is tested against the test set, test_ images, and test_ labels arrays.
fashion_mnist = tf keras.datasets.fashion_ mnist
(train__images, train_labels), (test_images, test_labels) = fashion_ mnist.load_ data()
Since you have 10 types of images in the dataset, assign labels from zero to nine. Each image is assigned
one label. The images are 28x28 NumPy arrays, with pixel values ranging from zero to 255.

5. Each image is mapped to a single label. Since the class names are not included with the dataset, store
them, and later use them when plotting the images:

46.1. Inception V3 with PyTorch 419

https://github.com/ROCmSoftwarePlatform/tensorflow_fashionmnist/blob/main/fashion_mnist.py

ROCm Documentation, Release 5.7.1

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal’, 'Shirt', 'Sneaker', 'Bag', 'Ankle,,
—boot']

6. Use this code to explore the dataset by knowing its dimensions:
train_ images.shape
7. Use this code to print the size of this training set:
print(len(train_ labels))
8. Use this code to print the labels of this training set:
print(train_ labels)
9. Preprocess the data before training the network, and you can start inspecting the first image, as its
pixels will fall in the range of zero to 255.
plt.figure()
plt.imshow (train__images|[0])
plt.colorbar()
plt.grid(False)
plt.show()
§ v,]
1%
pr s
W
]
1]
=]] = L] ol =]

10. From the above picture, you can see that values are from zero to 255. Before training this on the neural
network, you must bring them in the range of zero to one. Hence, divide the values by 255.
train_images = train_ images / 255.0
test_images = test_ images / 255.0

11. To ensure the data is in the correct format and ready to build and train the network, display the first
25 images from the training set and the class name below each image.
plt.figure(figsize=(10,10))
for i in range(25):

plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks(]])
plt.grid(False)
plt.imshow(train_ images[i], cmap=plt.cm.binary)
plt.xlabel(class_ names[train_ labels[i]])
plt.show()
420 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

ﬁ

Tshwrmiog

-
I

Tt

Puilcreer
Shralpd

o e
T
.'1‘I|‘
H | L
T Ll
Pouier L. Bag it

46.1.

Inception V3 with PyTorch

421

ROCm Documentation, Release 5.7.1

The basic building block of a neural network is the layer. Layers extract representations from the
data fed into them. Deep Learning consists of chaining together simple layers. Most layers, such as
tf.keras.layers.Dense, have parameters that are learned during training.

model = tf keras.Sequential([
tf.keras.layers.Flatten(input_ shape=(28, 28)),
tf.keras.layers.Dense(128, activation="'relu'),
tf.keras.layers.Dense(10)

D

e The first layer in this network tf.keras.layers.Flatten transforms the format of the images from a
two-dimensional array (of 28 x 28 pixels) to a one-dimensional array (of 28 * 28 = 784 pixels).
Think of this layer as unstacking rows of pixels in the image and lining them up. This layer has
no parameters to learn; it only reformats the data.

o After the pixels are flattened, the network consists of a sequence of two tf.keras.layers.Dense
layers. These are densely connected or fully connected neural layers. The first Dense layer has
128 nodes (or neurons). The second (and last) layer returns a logits array with a length of 10.
Each node contains a score that indicates the current image belongs to one of the 10 classes.

12. You must add the Loss function, Metrics, and Optimizer at the time of model compilation.

model.compile(optimizer='adam’,
loss=tf.keras.losses.SparseCategorical Crossentropy (from__logits=True),
metrics=['accuracy'])

e Loss function —This measures how accurate the model is during training when you are looking
to minimize this function to “steer” the model in the right direction.

e Optimizer —This is how the model is updated based on the data it sees and its loss function.
e Metrics —This is used to monitor the training and testing steps.

The following example uses accuracy, the fraction of the correctly classified images.

To train the neural network model, follow these steps:

1. Feed the training data to the model. The training data is in the train_ images and train_ labels
arrays in this example. The model learns to associate images and labels.

2. Ask the model to make predictions about a test set—in this example, the test_images array.
3. Verify that the predictions match the labels from the test_labels array.
4. To start training, call the model.fit method because it “fits” the model to the training data.

model.fit(train__images, train_ labels, epochs=10)

5. Compare how the model will perform on the test dataset.

test_loss, test_acc = model.evaluate(test__images, test_labels, verbose=2)

print('"\nTest accuracy:', test_acc)

6. With the model trained, you can use it to make predictions about some images: the model’s linear
outputs and logits. Attach a softmax layer to convert the logits to probabilities, making it easier
to interpret.

probability__model = tf keras.Sequential([model,
tf keras.layers.Softmax()])

(continues on next page)

422

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

(continued from previous page)

predictions = probability__model.predict(test__images)

7. The model has predicted the label for each image in the testing set. Look at the first prediction:

predictions|0]

A prediction is an array of 10 numbers. They represent the model’s “confidence” that the image
corresponds to each of the 10 different articles of clothing. You can see which label has the highest
confidence value:

np.argmax(predictions[0])

8. Plot a graph to look at the complete set of 10 class predictions.

def plot_ image(i, predictions_ array, true_label, img):
true_label, img = true_ label]i], img[i]

plt.grid(False)

plt.xticks([])

plt.yticks([])

plt.imshow(img, cmap=plt.cm.binary)

predicted_ label = np.argmax(predictions_ array)
if predicted__label == true_ label:

color = 'blue'
else:

color = 'red'

plt.xlabel(” % ({})” format(class_names[predicted label],
100*np.max(predictions_ array),
class_ names|true_label]),
color=color)

def plot_ value_array(i, predictions_ array, true_label):
true_label = true_ label[i]

plt.grid(False)

plt.xticks(range(10))

plt.yticks([])

thisplot = plt.bar(range(10), predictions_ array, color="#T777777")
plt.ylim([0, 1])

predicted_ label = np.argmax(predictions_ array)

thisplot|predicted_ label].set__color('red")
thisplot[true_ label].set__color('blue')

9. With the model trained, you can use it to make predictions about some images. Review the
0-th image predictions and the prediction array. Correct prediction labels are blue, and incorrect
prediction labels are red. The number gives the percentage (out of 100) for the predicted label.

i=0

plt.figure(figsize=(6,3))

plt.subplot(1,2,1)

plot__image(i, predictions][i], test_ labels, test_ images)
plt.subplot(1,2,2)

(continues on next page)

46.1. Inception V3 with PyTorch 423

ROCm Documentation, Release 5.7.1

10.

11.

12.

(continued from previous page)

plot_ value_array(i, predictions][i], test_labels)
plt.show()

#nkle boot 100% (Ankie boot)

i=12

plt.figure(figsize=(6,3))

plt.subplot(1,2,1)

plot_ image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)

plot__value_ array(i, predictions][i], test_labels)
plt.show()

E-'ll]_i_:'g k | B s — p—
- i 0123456780%8

Use the trained model to predict a single image.

Grab an image from the test dataset.
img = test_images[1]
print(img.shape)

tf.keras models are optimized to make predictions on a batch, or collection, of examples at once.
Accordingly, even though you are using a single image, you must add it to a list.

Add the image to a batch where it's the only member.
img = (np.expand_ dims(img,0))

print(img.shape)

Predict the correct label for this image.

424

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

predictions_ single = probability__model.predict(img)
print(predictions_ single)
plot_ value_array(1, predictions_ single[0], test_labels)

_ = plt.xticks(range(10), class _names, rotation=45)
plt.show()

g e'-;':av.;,&' ‘;, '
ﬂ\ﬁﬂﬁkp?ﬁ ﬁ,_;#‘ “Jﬂ@%&ﬁ-

13. tf.keras.Model.predict returns a list of lists—one for each image in the batch of data. Grab the
predictions for our (only) image in the batch.

np.argmax(predictions_ single[0])

46.1.3.4 Case Study: TensorFlow with Text Classification

This procedure demonstrates text classification starting from plain text files stored on disk. You will train a
binary classifier to perform sentiment analysis on an IMDB dataset. At the end of the notebook, there is an
exercise for you to try in which you will train a multi-class classifier to predict the tag for a programming
question on Stack Overflow.

Follow these steps:

1. Import the necessary libraries.

import matplotlib.pyplot as plt
import os

import re

import shutil

import string

import tensorflow as tf

from tensorflow.keras import layers
from tensorflow.keras import losses

2. Get the data for the text classification, and extract the database from the given link of IMDB.

46.1. Inception V3 with PyTorch 425

ROCm Documentation, Release 5.7.1

url = "https://ai.stanford.edu/~amaas/data/sentiment /acllmdb_ v1.tar.gz”

dataset = tf.keras.utils.get_file("acllmdb_v17, url,
untar="True, cache_dir=".",
cache_subdir="")

Downloading data from https://ai.stanford.edu/~amaas/data/sentiment/acllmdb_ v1.tar.gz
84131840/84125825 [s=============== m—————==—c] - 1s Ous/step
84149932/84125825 [== == = == ===]| — 1s Ous/step

. Fetch the data from the directory.

dataset__dir = os.path.join(os.path.dirname(dataset), 'acllmdb')
print(os.listdir(dataset__dir))

. Load the data for training purposes.

train_ dir = os.path.join(dataset_ dir, 'train')
os.listdir(train_ dir)

['labeledBow.feat',
'urls__pos.txt',
'urls__unsup.txt',
'unsup',

'pos',

'unsupBow .feat',
'urls__neg.txt',

'neg'|

The directories contain many text files, each of which is a single movie review. To look at one of them,
use the following;:

sample_ file = os.path.join(train_ dir, 'pos/1181_9.txt")
with open(sample_ file) as f:
print(f.read())

As the IMDB dataset contains additional folders, remove them before using this utility.

remove_ dir = os.path.join(train_ dir, 'unsup')
shutil.rmtree(remove__dir)

batch size = 32

seed = 42

The IMDB dataset has already been divided into train and test but lacks a validation set. Create a
validation set using an 80:20 split of the training data by using the validation_ split argument below:

raw__train_ ds=tf keras.utils.text_ dataset_ from_ directory('acllmdb/train',batch_ size=batch__size,,
—validation__split=0.2,subset="'training', seed=seed)

As you will see in a moment, you can train a model by passing a dataset directly to model.fit. If you
are new to tf.data, you can also iterate over the dataset and print a few examples as follows:

for text_batch, label batch in raw_ train_ ds.take(1):
for i in range(3):
print("Review”, text_ batch.numpy()[i])
print("Label”, label _batch.numpy()[i])

426

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

10.

The labels are zero or one. To see which of these correspond to positive and negative movie reviews,
check the class names property on the dataset.

print(”Label 0 corresponds to”, raw__train__ds.class_names|0])
print("Label 1 corresponds to”, raw__train_ds.class_names[1])

Next, create validation and test the dataset. Use the remaining 5,000 reviews from the training set for
validation into two classes of 2,500 reviews each.

raw_val ds = tf.keras.utils.text_dataset_from_ directory('acllmdb/train',
batch__size=batch__size,validation_ split=0.2,subset="'validation', seed=seed)

raw__test_ds =
tf.keras.utils.text_ dataset_ from__ directory(
'acllmdb/test',
batch_ size=batch_ size)

To prepare the data for training, follow these steps:

1.

Standardize, tokenize, and vectorize the data using the helpful tf keras.layers.TextVectorization layer.

def custom__standardization(input_ data):

lowercase = tf.strings.lower(input_ data)

stripped__html = tf.strings.regex_ replace(lowercase, '
', '")

return tf.strings.regex_ replace(stripped_ html, '[Ys]" % re.escape(string.
—punctuation),"")

Create a TextVectorization layer. Use this layer to standardize, tokenize, and vectorize our data. Set
the output__mode to int to create unique integer indices for each token. Note that we are using the
default split function and the custom standardization function you defined above. You will also define
some constants for the model, like an explicit maximum sequence_ length, which will cause the layer
to pad or truncate sequences to exactly sequence_ length values.

max_ features = 10000

sequence__length = 250

vectorize_ layer = layers. TextVectorization(
standardize=custom__standardization,
max_ tokens=max_ features,
output_ mode='int',
output_sequence_ length=sequence_ length)

Call adapt to fit the state of the preprocessing layer to the dataset. This causes the model to build an
index of strings to integers.

Make a text-only dataset (without labels), then call adapt
train_ text = raw_ train_ ds.map(lambda x, y: x)
vectorize_ layer.adapt(train_ text)

. Create a function to see the result of using this layer to preprocess some data.

def vectorize__text(text, label):
text = tf.expand_ dims(text, -1)
return vectorize_ layer(text), label

text_ batch, label batch = next(iter(raw_train_ ds))
first_review, first_ label = text_ batch[0], label batch|[0]
print("Review”, first_ review)

(continues on next page)

46.1.

Inception V3 with PyTorch 427

ROCm Documentation, Release 5.7.1

(continued from previous page)

print("Label”, raw_ train ds.class names|[first_label])
print(”Vectorized review”, vectorize_ text(first_review, first_label))

Vectorized review (<tf.Tensor: shapes(l, 258), df?ba=1nt64, numpys
array([[9257, 15, 28, 5, 2, 241, a1, s, i, 58, 4,
1, 1811, 6, 262, 38, 9, 3891, 35, 2, 1, 43,
382, 5223, 16, 4, 1113, 12, 43, 5739, 3600, 2, 83,
225, 55, 3200, 3808, 28, 973, 18, 51, 55, 3209, 258,
328, 34, 48, 4386, 3, 294, 58, 44, 6, 2911, 4,
6757, 92, 22, 184, 2, 4916, 1@e, 1221, 336, 1B1, 1199,
1484, 4, @808, 568, 31, 4, 839, 278, 3, 741, 741,
58, T4, 31, i@, 2870, a, a, B, B, @, a,
a, a, 8, 8, @, o, a, 9, 8, a, a,
a, e, o, B, a, o, e, b, 8, o, a,
a, e, 8, o, @, a, a, 8, 8, a, a,
a, a, 8, 8, @, @, a, 8, a, @, a,
a, a, 8. a, a, a, a, B, a, a, a,
a, a, a, a, a, @, a, 8, : a, a,
a, a, 8. B, a, a, a, B, 8, @, a,
a, e, 8. 8, a, a, a, B, 8, a, a,
a, a, 8, 8. @, o, a, 8, 8, @, a,
a, a, 8. a, a, a, a, B, a, a, a,
a, a, 9, 8, a, 0, a, e, 8, 8, a,
a, a, 8, 8, o, o, a, 8, 8, @, a,
a, e, 8, B, o, 0, a, B, B, o, a,
a, a, 8, 8, @, o, a, e, 8, a, a,
a, a, 8, a, a, a, a, 8]1)=, =tf.Tensor: shape=(), dtype=int32, num
py=0>)
1287 ---= silent
313 ---> night
Vocabulary size: 18000 .

As you can see above, each token has been replaced by an integer. Look up the token (string) that
each integer corresponds to by calling get_ vocabulary() on the layer.

print (71287 ---> 7 vectorize_layer.get_ vocabulary()[1287])
print(” 313 -—-> 7 vectorize_layer.get_ vocabulary()[313])
print('Vocabulary size: {}'.format(len(vectorize_ layer.get_ vocabulary())))

You are nearly ready to train your model. As a final preprocessing step, apply the TextVectorization
layer we created earlier to train, validate, and test the dataset.

train_ ds = raw__train_ ds.map(vectorize_text)
val_ds = raw__val__ds.map(vectorize__text)
test__ds = raw__test__ds.map(vectorize__text)

The cache() function keeps data in memory after it is loaded off disk. This ensures the dataset does
not become a bottleneck while training your model. If your dataset is too large to fit into memory,
you can also use this method to create a performant on-disk cache, which is more efficient to read than
many small files.

The prefetch() function overlaps data preprocessing and model execution while training.

AUTOTUNE = tf.data. AUTOTUNE

train_ds = train_ ds.cache().prefetch(buffer size=AUTOTUNE)
val _ds = val ds.cache().prefetch(buffer size=AUTOTUNE)
test__ds = test__ds.cache().prefetch(buffer_size=AUTOTUNE)

Create your neural network.

428

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

embedding dim = 16

model = tf keras.Sequential([layers. Embedding(max_ features + 1, embedding_dim),layers.Dropout(0.2),
—layers.GlobalAveragePooling1D(),

layers.Dropout(0.2),layers.Dense(1)])

model.summary()

pdel: “sequential~”

Layer (type) Qutput Shape Param &
cmbedding (Embedding) (None, Nome, 16) 1606016
dropout (Dropout) (None, None, 16) L:]

global average poolingld (G (None, 16) -]
lobalAveragePoolinglD)

dropout_1 (Dropout) (None, 16) 2]

dense {[Dense) (None, 1) 17

Total params: 160,833
Trainable params: 166,833
Mon-trainable params: @

8. A model needs a loss function and an optimizer for training. Since this is a binary classification
problem and the model outputs a probability (a single-unit layer with a sigmoid activation), use losses.

BinaryCrossentropy loss function.

model.compile(loss=losses. BinaryCrossentropy (from__logits=True),
optimizer='adam',metrics=tf.metrics. Binary Accuracy (threshold=0.0))

9. Train the model by passing the dataset object to the fit method.

epochs = 10
history = model.fit(train_ ds,validation_ data=val_ds,epochs=epochs)

pach 1718
25/625 |eemsssssssssssssssssssssssssss] - S5 TES/step - loss: O 6660 - binary accuracy: @9.6914 -
al loss: 8.6174 - val binary accuracy: 0.7718

pach 2,18

25/625 |=eessssssssnscnnsnsnnnnnnannnn 1 - 45 Tes/step - loss: 8.5508 - binary accuracy: 0.8085 -
al_loss: 0.5808 - val _binary accuracy: ©.8226

pach 3/1@

25/625 |=essssssssssssssssssssssssssses] - 4% TEsSstep - loss: 0.4450 - binary accuracy: 0.8442 -
al loss: B.4210 - val binary accuracy: 0.8454

25/625 |sesssssssssssssssssssssssssses] - 45 Tes/step - loss: ©0.3784 - binary accuracy: 0.8666 -
al loss: 8.3742 - val binary accuracy: 0.8608

pach 5716

25/625 [eeesssssssssssnssnssnsessensns] - 45 TmsSstep - loss: ©.3361 - binary_accuracy: @.8787 -
al_loss: 8.3454 - val_binary accuracy: 0.8678

pach 610

25/625 [messssssssssssssssssssssssssss] - 4% TEs/step - loss: 0.3050 - binary accuracy: 0.8874 -
al losi: B.3263 - val binary accuracy: 0.8714

pach 710

25/625 [eesssssssssssssssssssssssssses] - 45 TEs/step - loss: @.2822 - binary accuracy: @.8961 -
al_loss: 9.3130 - val binary accuracy: 0.8728

poch 8/16

25/625 |ssssssssssssnssnssnsnnannnnnnn] - 45 Tms/step - loss: 0.2626 - binary accuracy: 0.9043 -
al_loss: ©.36835 - val _binary accuracy: 0.8764

poch 9710

25/625 |wesssssssssssssssssssssssssees] = 4% TEsSstep - loss: 0.2464 - binary accuracy: @.9031 -
al losi: B.2969 - val binary accuracy: 0.B770

poch 18718

25/625 |=esssszssssssssssssssssssssess] - 45 TEsSstep - loss: 8.2332 - binary accuracy: 9.9168 -

10. See how the model performs. Two values are returned: loss (a number representing our error; lower

values are better) and accuracy.

46.1. Inception V3 with PyTorch

429

https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy

ROCm Documentation, Release 5.7.1

11.

12.

13.

loss, accuracy = model.evaluate(test_ds)

print(”Loss: 7, loss)

print(”Accuracy: 7, accuracy)

Note: model.fit() returns a History object that contains a dictionary with everything that happened
during training.

history_ dict = history.history
history_dict.keys()

Four entries are for each monitored metric during training and validation. Use these to plot the training
and validation loss for comparison, as well as the training and validation accuracy:

acc = history__dict['binary__accuracy']

val_acc = history_dict['val binary accuracy']
loss = history__dict['loss']

val__loss = history__dict['val_loss']

epochs = range(1, len(acc) + 1)

"bo” is for "blue dot”

plt.plot(epochs, loss, 'bo', label="Training loss')

b is for ”solid blue line”

plt.plot(epochs, val_loss, 'b', label="Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs")

plt.ylabel('Loss')

plt.legend()

plt.show()

Fig. 46.2 and Fig. 46.3 illustrate the training and validation loss and the training and validation
accuracy.

Export the model.

export__model = tf.keras.Sequential(|
vectorize_ layer,

model,

layers. Activation('sigmoid")

D

export__model.compile(
loss=losses.BinaryCrossentropy (from_ logits=False), optimizer="adam”, metrics=['accuracy']
)

Test it with “raw_ test_ ds", which yields raw strings
loss, accuracy = export_model.evaluate(raw__test_ ds)
print(accuracy)

To get predictions for new examples, call model.predict().

examples = |
”The movie was great!”,

(continues on next page)

430

Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

Training and validation loss

. ® Taining loss
— Validation loss
0.6 1
-
05 1
[0
§ L]
04 4
4 L
03 ° .
¢ L
2 4 b B 10
Epochs
Fig. 46.2: Training and Validation Loss
Training and validation accuracy
L
L
0.90 - o °*
.
o
0.85 -
o
e
S 080 - o
]
0.75 1
® Taining acc
0701 & — \alidation acc
2 4 6 8 10
Epochs

Fig. 46.3: Training and Validation Accuracy

46.1. Inception V3 with PyTorch 431

ROCm Documentation, Release 5.7.1

(continued from previous page)

”The movie was okay.”,
”The movie was terrible...”

]

export__model.predict (examples)

46.1.4 References

46.2 Inference Optimization with MIGraphX

The following sections cover inferencing and introduces MIGraphX.

46.2.1 Inference

The inference is where capabilities learned during Deep Learning training are put to work. It refers to using
a fully trained neural network to make conclusions (predictions) on unseen data that the model has never
interacted with before. Deep Learning inferencing is achieved by feeding new data, such as new images, to
the network, giving the Deep Neural Network a chance to classify the image.

Taking our previous example of MNIST, the DNN can be fed new images of handwritten digit images,
allowing the neural network to classify digits. A fully trained DNN should make accurate predictions about
what an image represents, and inference cannot happen without training.

46.2.2 MIGraphX Introduction

MIGraphX is a graph compiler focused on accelerating the Machine Learning inference that can target AMD
GPUs and CPUs. MIGraphX accelerates the Machine Learning models by leveraging several graph-level
transformations and optimizations. These optimizations include:

e Operator fusion

o Arithmetic simplifications

e Dead-code elimination

o Common subexpression elimination (CSE)
« Constant propagation

After doing all these transformations, MIGraphX emits code for the AMD GPU by calling to MIOpen or
rocBLAS or creating HIP kernels for a particular operator. MIGraphX can also target CPUs using DNNL
or ZenDNN libraries.

MIGraphX provides easy-to-use APIs in C++ and Python to import machine models in ONNX or Ten-
sorFlow. Users can compile, save, load, and run these models using MIGraphX’s C++ and Python APIs.
Internally, MIGraphX parses ONNX or TensorFlow models into internal graph representation where each
operator in the model gets mapped to an operator within MIGraphX. Each of these operators defines various
attributes such as:

e Number of arguments

e Type of arguments

432 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

e Shape of arguments
After optimization passes, all these operators get mapped to different kernels on GPUs or CPUs.

After importing a model into MIGraphX, the model is represented as migraphx::program. migraphx::program
is made up of migraphx::module. The program can consist of several modules, but it always has one
main__module. Modules are made up of migraphx::instruction_ref. Instructions contain the migraphx::op
and arguments to the operator.

46.2.3 Installing MIGraphX

There are three options to get started with MIGraphX installation. MIGraphX depends on ROCm libraries;
assume that the machine has ROCm installed.

46.2.3.1 Option 1: Installing Binaries

To install MIGraphX on Debian-based systems like Ubuntu, use the following command:

sudo apt update && sudo apt install -y migraphx

The header files and libraries are installed under /opt/rocm-\<version\>, where <version> is the ROCm
version.

46.2.3.2 Option 2: Building from Source

There are two ways to build the MIGraphX sources.

e Use the ROCm build tool - This approach uses rbuild to install the prerequisites and build the libraries
with just one command.

or

e Use CMake - This approach uses a script to install the prerequisites, then uses CMake to build the
source.

For detailed steps on building from source and installing dependencies, refer to the following README file:
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX#building-from-source

46.2.3.3 Option 3: Use Docker

To use Docker, follow these steps:

1. The easiest way to set up the development environment is to use Docker. To build Docker from scratch,
first clone the MIGraphX repository by running:

git clone --recursive https://github.com/ROCmSoftwarePlatform/AMDMIGraphX

2. The repository contains a Dockerfile from which you can build a Docker image as:

‘ docker build -t migraphx .

3. Then to enter the development environment, use Docker run:

docker run --device='/dev/kfd' --device="'/dev/dri' -v="pwd " :/code/AMDMIGraphX -w /code/
—AMDMIGraphX --group-add video -it migraphx

46.2. Inference Optimization with MIGraphX 433

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX#use-the-rocm-build-tool-rbuild
https://github.com/RadeonOpenCompute/rbuild
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX#use-cmake-to-build-migraphx
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX#building-from-source

ROCm Documentation, Release 5.7.1

The Docker image contains all the prerequisites required for the installation, so users can go to the folder
/code/ AMDMIGraphX and follow the steps mentioned in Option 2: Building from Source.

46.2.4 MIGraphX Example

MIGraphX provides both C++ and Python APIs. The following sections show examples of both using the
Inception v3 model. To walk through the examples, fetch the Inception v3 ONNX model by running the
following:

import torch

import torchvision.models as models

inception = models.inception_ v3(pretrained=True)

torch.onnx.export (inception,torch.randn(1,3,299,299), ”inceptionil.onnx”)

This will create inceptionil.onnx, which can be imported in MIGraphX using C++ or Python API.

46.2.4.1 MIGraphX Python API

Follow these steps:

1. To import the MIGraphX module in Python script, set PYTHONPATH to the MIGraphX libraries
installation. If binaries are installed using steps mentioned in Option 1: Installing Binaries, perform
the following action:

export PYTHONPATH=$PYTHONPATH:/opt/rocm/

2. The following script shows the usage of Python API to import the ONNX model, compile it, and run
inference on it. Set LD_LIBRARY_PATH to /opt/rocm/ if required.

import migraphx and numpy

import migraphx

import numpy as np

import and parse inception model

model = migraphx.parse_onnx(”inceptionil.onnx”)

compile model for the GPU target
model.compile(migraphx.get__target("gpu”))

optionally print compiled model

model.print()

create random input image

input_ image = np.random.rand(1, 3, 299, 299).astype('float32")
feed image to model, 'x.1" is the input param name
results = model.run({'x.1": input__image})

get the results back

result_np = np.array(results[0])

print the inferred class of the input image
print(np.argmax(result_ np))

Find additional examples of Python API in the /examples directory of the MIGraphX repository.

434 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

46.2.5 MIGraphX C++ API

Follow these steps:

1. The following is a minimalist example that shows the usage of MIGraphX C++ API to load ONNX
file, compile it for the GPU, and run inference on it. To use MIGraphX C++ API, you only need to
load the migraphx.hpp file. This example runs inference on the Inception v3 model.

#include <vector>

#include <string>

#include <algorithm>

#include <ctime>

#include <random>

#include <migraphx/migraphx.hpp>

int main(int arge, char®* argv)
{
migraphx::program prog;
migraphx::onnx_ options onnx_ opts;
// import and parse onnx file into migraphx::program
prog = parse_onnx(”inceptionil.onnx”, onnx_ opts);
// print imported model
prog.print();
migraphx::target targ = migraphx::target(”"gpu”);
migraphx::compile_ options comp_ opts;
comp__opts.set__offload__copy();
// compile for the GPU
prog.compile(targ, comp_ opts);
// print the compiled program
prog.print();
// randomly generate input image
// of shape (1, 3, 299, 299)
std::srand(unsigned (std::time(nullptr)));
std::vector<float> input_image(1%299%299%3);
std::generate(input__image.begin(), input__image.end(), std::rand);
// users need to provide data for the input
// parameters in order to run inference
// you can query into migraph program for the parameters
migraphx::program__parameters prog_ params;
auto param_shapes = prog.get_ parameter_shapes();
auto input = param__shapes.names().front();
// create argument for the parameter
prog_ params.add(input, migraphx::argument(param_shapes[input], input__image.data()));
// run inference
auto outputs = prog.eval(prog_ params);
// read back the output
float™ results = reinterpret cast<float*>(outputs[0].data());
float™ max = std::max__element(results, results + 1000);
int answer = max - results;
std::cout << "answer: 7 << answer << std::endl;

2. To compile this program, you can use CMake and you only need to link the migraphx::c library to use
MIGraphX’s C++ API. The following is the CMakeLists.txt file that can build the earlier example:

cmake_minimum_ required(VERSION 3.5)
project (CAI)

(continues on next page)

46.2. Inference Optimization with MIGraphX 435

ROCm Documentation, Release 5.7.1

(continued from previous page)

set (CMAKE_CXX_STANDARD 14)
set (EXAMPLE inception__inference)

list (APPEND CMAKE PREFIX PATH /opt/rocm/hip /opt/rocm)
find package (migraphx)

message(”source file: 7 ${EXAMPLE}.cpp ” ---> bin: 7 ${EXAMPLE})
add__executable(${EXAMPLE} ${EXAMPLE}.cpp)

target_link libraries(${ EXAMPLE} migraphx::c)

3. To build the executable file, run the following from the directory containing the inception__inference.cpp
file:

mkdir build

cd build

cmake ..

make -j$(nproc)
./inception__inference

Note:

Set "LD_LIBRARY_ PATH" to " /opt/rocm/lib" if required during the build. Additional examples can be found
—in the MIGraphX repository under the * /examples/" directory.

46.2.6 Tuning MIGraphX

MIGraphX uses MIOpen kernels to target AMD GPU. For the model compiled with MIGraphX, tune
MIOpen to pick the best possible kernel implementation. The MIOpen tuning results in a significant per-
formance boost. Tuning can be done by setting the environment variable MIOPEN_FIND_ENFORCE=3.

Note:

The tuning process can take a long time to finish.

Example: The average inference time of the inception model example shown previously over 100 iterations
using untuned kernels is 0.01383ms. After tuning, it reduces to 0.00459ms, which is a 3x improvement. This
result is from ROCm v4.5 on a MI1100 GPU.

Note:

The results may vary depending on the system configurations.

For reference, the following code snippet shows inference runs for only the first 10 iterations for both tuned
and untuned kernels:

444 UNTUNED #4444

iterator : 0

(continues on next page)

436 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

(continued from previous page)

Inference
Inference
iterator :
Inference
Inference
iterator :
Inference
Inference
iterator :
Inference
Inference
iterator :
Inference
Inference
iterator :
Inference
Inference
iterator :
Inference
Inference
iterator :
Inference
Inference
iterator :

complete
time: 0.063ms
1

complete
time: 0.008ms
2

complete
time: 0.007ms
3

complete
time: 0.007ms
4

complete
time: 0.007ms
5

complete
time: 0.008ms
6

complete
time: 0.007ms
7

complete
time: 0.028ms
8

Inference complete
Inference time: 0.029ms
iterator : 9

Inference complete
Inference time: 0.029ms

##+# TUNED £

iterator : 0

Inference complete
Inference time: 0.063ms
iterator : 1

Inference complete
Inference time: 0.004ms
iterator : 2

Inference complete
Inference time: 0.004ms
iterator : 3

Inference complete
Inference time: 0.004ms
iterator : 4

Inference complete
Inference time: 0.004ms
iterator : 5

Inference complete
Inference time: 0.004ms
iterator : 6

Inference complete
Inference time: 0.004ms
iterator : 7

Inference complete
Inference time: 0.004ms
iterator : 8

(continues on next page)

46.2. Inference Optimization with MIGraphX 437

ROCm Documentation, Release 5.7.1

(continued from previous page)

Inference complete
Inference time: 0.004ms
iterator : 9

Inference complete
Inference time: 0.004ms

46.2.6.1 YModel

The best inference performance through MIGraphX is conditioned upon having tuned kernel configurations
stored in a /home local User Database (DB). If a user were to move their model to a different server or allow
a different user to use it, they would have to run through the MIOpen tuning process again to populate the
next User DB with the best kernel configurations and corresponding solvers.

Tuning is time consuming, and if the users have not performed tuning, they would see discrepancies between
expected or claimed inference performance and actual inference performance. This has led to repetitive and
time-consuming tuning tasks for each user.

MIGraphX introduces a feature, known as YModel, that stores the kernel config parameters found during
tuning into a .mxr file. This ensures the same level of expected performance, even when a model is copied
to a different user/system.

The YModel feature is available starting from ROCm 5.4.1 and UIF 1.1.

46.2.6.1.1 YModel Example

Through the migraphx-driver functionality, you can generate .mxr files with tuning information stored inside
it by passing additional --binary --output model.mxr to migraphx-driver along with the rest of the necessary
flags.

For example, to generate .mxr file from the ONNX model, use the following:

./path/to/migraphx-driver compile --onnx resnet50.onnx --enable-offload-copy --binary --output resnet50.mxr

To run generated .mxr files through migraphx-driver, use the following:

./path/to/migraphx-driver run --migraphx resnet50.mxr --enable-offload-copy

Alternatively, you can use MIGraphX’s C++ or Python API to generate .mxr file. Refer to Fig. 46.4 for an
example.

438 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.7.1

// parse onnx file, compile and do other processing

migraphx::parse_onnx("resnet5@.onnx»

once model has b rocessed, it ca e saved as mxr file as follows

std: :string filename

migraphx::save(pl, filename.c _str());

to load mxr file,

auto p2 = migraphx::load(filename.c str(]

Fig. 46.4: Generating a .mxr File

46.2. Inference Optimization with MIGraphX 439

ROCm Documentation, Release 5.7.1

440 Chapter 46. Machine Learning, Deep Learning, and Artificial Intelligence

CHAPTER

FORTYSEVEN

ABOUT ROCM DOCUMENTATION

ROCm documentation is made available under open source licenses. Documentation is built using open
source toolchains. Contributions to our documentation is encouraged and welcome. As a contributor, please
familiarize yourself with our documentation toolchain.

47.1 rocm-docs-core

rocm-docs-core is an AMD-maintained project that applies customization for our documentation. This
project is the tool most ROCm repositories use as part of the documentation build. It is also available as a
pip package on PyPI.

See the user and developer guides for rocm-docs-core at rocm-docs-core documentation.

47.2 Sphinx

Sphinx is a documentation generator originally used for Python. It is now widely used in the Open Source
community. Originally, Sphinx supported reStructuredText (RST) based documentation, but Markdown
support is now available. ROCm documentation plans to default to Markdown for new projects. Existing
projects using RST are under no obligation to convert to Markdown. New projects that believe Markdown
is not suitable should contact the documentation team prior to selecting RST.

47.3 Read the Docs

Read the Docs is the service that builds and hosts the HTML documentation generated using Sphinx to our
end users.

47.4 Doxygen

Doxygen is a documentation generator that extracts information from inline code. ROCm projects typically
use Doxygen for public API documentation unless the upstream project uses a different tool.

441

https://github.com/RadeonOpenCompute/rocm-docs-core
https://pypi.org/project/rocm-docs-core/
https://rocm.docs.amd.com/projects/rocm-docs-core/en/latest/index.html
https://www.sphinx-doc.org/en/master/
https://docs.readthedocs.io/en/stable/
https://www.doxygen.nl/

ROCm Documentation, Release 5.7.1

47.4.1 Breathe

Breathe is a Sphinx plugin to integrate Doxygen content.

47.4.2 MyST

Markedly Structured Text (MyST) is an extended flavor of Markdown (CommonMark) influenced by re-
StructuredText (RST) and Sphinx. It is integrated into ROCm documentation by the Sphinx extension
myst-parser. A cheat sheet that showcases how to use the MyST syntax is available over at the Jupyter
reference.

47.4.3 Sphinx External TOC

Sphinx External Table of Contents (TOC) is a Sphinx extension used for ROCm documentation navigation.
This tool generates a navigation menu on the left based on a YAML file that specifies the table of contents.
It was selected due to its flexibility that allows scripts to operate on the YAML file. Please transition to this
file for the project’s navigation. You can see the _toc.yml.in file in this repository in the docs/sphinx folder
for an example.

47.4.4 Sphinx Book Theme

Sphinx Book Theme is a Sphinx theme that defines the base appearance for ROCm documentation. ROCm
documentation applies some customization, such as a custom header and footer on top of the Sphinx Book
Theme.

47.4.5 Sphinx Design

Sphinx Design is a Sphinx extension that adds design functionality. ROCm documentation uses Sphinx
Design for grids, cards, and synchronized tabs.

442 Chapter 47. About ROCm Documentation

https://www.breathe-doc.org/
https://myst-tools.org/docs/spec
https://commonmark.org/
https://myst-parser.readthedocs.io/en/latest/
https://jupyterbook.org/en/stable/reference/cheatsheet.html
https://jupyterbook.org/en/stable/reference/cheatsheet.html
https://sphinx-external-toc.readthedocs.io/en/latest/intro.html
https://sphinx-book-theme.readthedocs.io/en/latest/
https://sphinx-design.readthedocs.io/en/latest/index.html

CHAPTER

FORTYEIGHT

CONTRIBUTING TO ROCM DOCS

AMD values and encourages the ROCm community to contribute to our code and documentation. This
repository is focused on ROCm documentation and this contribution guide describes the recommended
method for creating and modifying our documentation.

While interacting with ROCm Documentation, we encourage you to be polite and respectful in your contri-
butions, content or otherwise. Authors, maintainers of these docs act on good intentions and to the best of
their knowledge. Keep that in mind while you engage. Should you have issues with contributing itself, refer
to discussions on the GitHub repository.

For additional information on documentation functionalities, see the user and developer guides for rocm-
docs-core at rocm-docs-core documentation.

48.1 Supported Formats

Our documentation includes both Markdown and RST files. Markdown is encouraged over RST due to
the lower barrier to participation. GitHub-flavored Markdown is preferred for all submissions as it renders
accurately on our GitHub repositories. For existing documentation, MyST Markdown is used to implement
certain features unsupported in GitHub Markdown. This is not encouraged for new documentation. AMD
will transition to stricter use of GitHub-flavored Markdown with a few caveats. ROCm documentation also
uses Sphinx Design in our Markdown and RST files. We also use Breathe syntax for Doxygen documentation
in our Markdown files. See GitHub’s guide on writing and formatting on GitHub as a starting point.

ROCm documentation adds additional requirements to Markdown and RST based files as follows:

o Level one headers are only used for page titles. There must be only one level 1 header per file for both
Markdown and Restructured Text.

o Pass markdownlint check via our automated GitHub action on a Pull Request (PR). See the rocm-
docs-core linting user guide for more details.

48.2 Filenames and folder structure

Please use snake case (all lower case letters and underscores instead of spaces) for file names. For example,
example file name.md. Our documentation follows Pitchfork for folder structure. All documentation is in
/docs except for special files like the contributing guide in the / folder. All images used in the documentation
are placed in the /docs/data folder.

443

https://github.com/RadeonOpenCompute/ROCm/discussions
https://rocm.docs.amd.com/projects/rocm-docs-core/en/latest/index.html
https://myst-parser.readthedocs.io/en/latest/intro.html
https://sphinx-design.readthedocs.io/en/latest/index.html
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github
https://github.com/markdownlint/markdownlint
https://rocm.docs.amd.com/projects/rocm-docs-core/en/latest/user_guide/linting.html
https://rocm.docs.amd.com/projects/rocm-docs-core/en/latest/user_guide/linting.html

ROCm Documentation, Release 5.7.1

48.3 Language and Style

Adopt Microsoft CPP-Docs guidelines for Voice and Tone.

ROCm documentation templates to be made public shortly. ROCm templates dictate the recommended

structure and flow of the documentation. Guidelines on how to integrate figures, equations, and tables are
all based off MyST.

Font size and selection, page layout, white space control, and other formatting details are controlled via
rocm-docs-core. Raise issues in rocm-docs-core for any formatting concerns and changes requested.

48.4 More

For more topics, such as submitting feedback and ways to build documentation, see the Contributing Section
at rocm.docs.amd.com

48.5 Building Documentation

While contributing, one may build the documentation locally on the command-line or rely on Continuous
Integration for previewing the resulting HTML pages in a browser.

48.5.1 Pull Request documentation builds

When opening a PR to the develop branch on GitHub, the page corresponding to the PR (https://github.
com/RadeonOpenCompute/ROCm/pull/<pr_number>) will have a summary at the bottom. This requires
the user be logged in to GitHub.

e There, click Show all checks and Details of the Read the Docs pipeline. It will take you to a URL of the
form https://readthedocs.com/projects/advanced-micro-devices-rocm /builds/<some_ build_ num>/

— The list of commands shown are the exact ones used by CI to produce a render of the documen-
tation.

o There, click on the small blue link View docs (which is not the same as the bigger
button with the same text). It will take you to the built HTML site with a URL
of the form https://advanced-micro-devices-demo--<pr_number>.com.readthedocs.build/projects/
alpha/en/<pr_number>/.

48.5.2 Build documentation from the Command Line

Python versions known to build documentation:
e 3.8

To build the docs locally using Python Virtual Environment (venv), execute the following commands from
the project root:

python3 -mvenv .venv

Windows

.venv/Scripts/python -m pip install -r docs/sphinx/requirements.txt

.venv/Scripts/python -m sphinx -T -E -b html -d _build/doctrees -D language=en docs __build/html

(continues on next page)

444 Chapter 48. Contributing to ROCm Docs

https://github.com/MicrosoftDocs/cpp-docs/blob/main/styleguide/voice-tone.md
https://myst-parser.readthedocs.io/en/latest/intro.html
https://github.com/RadeonOpenCompute/rocm-docs-core
https://rocm.docs.amd.com/en/latest/contributing.html
https://rocm.docs.amd.com

ROCm Documentation, Release 5.7.1

(continued from previous page)

Linux
.venv/bin/python -m pip install -r docs/sphinx/requirements.txt
.venv/bin/python -m sphinx -T -E -b html -d _ build/doctrees -D language=en docs __build/html

Then open up _ build/html/index.html in your favorite browser.

48.5.3 Build documentation using Visual Studio (VS) Code

One can put together a productive environment to author documentation and also test it locally using VS
Code with only a handful of extensions. Even though the extension landscape of VS Code is ever changing,
here is one example setup that proved useful at the time of writing. In it, one can change/add content,
build a new version of the docs using a single VS Code Task (or hotkey), see all errors/ warnings emitted
by Sphinx in the Problems pane and immediately see the resulting website show up on a locally-served web
server.

48.5.3.1 Configuring VS Code

1. Install the following extensions:
e Python (ms-python.python)
o Live Server (ritwickdey.LiveServer)

2. Add the following entries in .vscode/settings.json

{

"liveServer.settings.root”: ”/.vscode/build /html”,
"liveServer.settings.wait”: 1000,
"python.terminal.activateEnvInCurrent Terminal”: true

}

The settings above are used for the following reasons:

« liveServer.settings.root: Sets the root of the output website for live previews. Must be changed
alongside the tasks.json command.

o liveServer.settings.wait: Tells live server to wait with the update to give time for Sphinx to
regenerate site contents and not refresh before all is done. (Empirical value)

¢ python.terminal.activateEnvInCurrentTerminal: Automatic virtual environment activation is a
nice touch, should you want to build the site from the integrated terminal.

3. Add the following tasks in .vscode/tasks.json

{

“version”: 72.0.07,
"tasks”: [

”label”: "Build Docs”,
"type”: "process”,
"windows”: {
"command”: ”${workspaceFolder}/.venv/Scripts/python.exe”
I
”command”: ”${workspaceFolder}/.venv/bin/python3”,
Pargs”: |
”—1[1”7

(continues on next page)

48.5. Building Documentation 445

ROCm Documentation, Release 5.7.1

(continued from previous page)

”sphinx”,

77_.]. 57,

“auto”,

‘,',_T?'r’

b7,

"html”,

7-d”,

”${workspaceFolder}/.vscode/build/doctrees”,

"D,

"]language=en”,

"${workspaceFolder} /docs”,
"${workspaceFolder}/.vscode/build/html”

]7

"problemMatcher”: [
“owner”: “sphinx”,
”fileLocation”: "absolute”;

"pattern”: {
"regexp”: 7T (7 \N\ABI\\sH) 2O\ /[F [[a-zA-Z]ANNN) :(\\d+):\ \s+(WARNING|ERROR):\ \s+(.

=%)87,
’file”: 1,
”line”: 2,
"severity”: 3,
"message”: 4
b
}’
{
Zowner”: “sphinx”,
”fileLocation”: "absolute”,
"pattern”: {
"regexp”: 7T (7 N\ A3\ \sH) TN/ [T ¥|[a-zA-Z) NN\ []):{ 1,23\ \s+ (WARNING|ERROR):\ \s+(.*)
’file”: 1,
"severity”: 2,
“message”: 3
}
}
],
"group”: {
"kind”: "build”,
"isDefault”: true
}
b
I,
}

(Implementation detail: two problem matchers were needed to be defined, because VS Code
doesn’t tolerate some problem information being potentially absent. While a single regex
could match all types of errors, if a capture group remains empty (the line number doesn’t
show up in all warning/error messages) but the pattern references said empty capture group,
VS Code discards the message completely.)

4. Configure Python virtual environment (venv)
e From the Command Palette, run Python: Create Environment

— Select venv environment and the docs/sphinx/requirements.txt file. (Simply pressing enter
while hovering over the file from the drop down is insufficient, one has to select the radio

446 Chapter 48. Contributing to ROCm Docs

ROCm Documentation, Release 5.7.1

button with the ‘Space’ key if using the keyboard.)
5. Build the docs
e Launch the default build Task using either:
— a hotkey (default is Ctrl4-Shift+B) or
— by issuing the Tasks: Run Build Task from the Command Palette.
6. Open the live preview

o Navigate to the output of the site within VS Code, right-click on .vscode/build /html/index.html
and select Open with Live Server. The contents should update on every rebuild without having
to refresh the browser.

48.6 How to provide feedback for ROCm documentation

There are four standard ways to provide feedback for this repository.

48.6.1 Pull Request

All contributions to ROCm documentation should arrive via the GitHub Flow targeting the develop branch
of the repository. If you are unable to contribute via the GitHub Flow, feel free to email us.

48.6.2 GitHub Discussions

To ask questions or view answers to frequently asked questions, refer to GitHub Discussions. On GitHub
Discussions, in addition to asking and answering questions, members can share updates, have open-ended
conversations, and follow along on via public announcements.

48.6.3 GitHub Issue

Issues on existing or absent docs can be filed as GitHub Issues.

48.6.4 Email

Send other feedback or questions to rocm-feedback@amd.com

48.6. How to provide feedback for ROCm documentation 447

https://docs.github.com/en/get-started/quickstart/github-flow
https://github.com/RadeonOpenCompute/ROCm/discussions
https://github.com/RadeonOpenCompute/ROCm/issues

ROCm Documentation, Release 5.7.1

448 Chapter 48. Contributing to ROCm Docs

CHAPTER

FORTYNINE

LICENSE

Note: This license applies to the ROCm repository that contains documentation primarily. For
other licensing information, see the Licensing Terms page.

MIT License
Copyright © 2023 Advanced Micro Devices, Inc. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS 1S”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

449

https://github.com/RadeonOpenCompute/ROCm

ROCm Documentation, Release 5.7.1

450 Chapter 49. License

Symbols

--gpu-max-threads-per-block

command line option, 270
--offload-arch

command line option, 270
-a

offload-arch command line option, 278
-C

offload-arch command line option, 278
-f

offload-arch command line option, 278
-ffast-math

command line option, 270
-fgpu-rdc

command line option, 270
-fno-gpu-rdc

command line option, 270
-fopenmp

command line option, 270
-fopenmp-targets

command line option, 270
-g

command line option, 270
-m

offload-arch command line option, 278
-mcumode

command line option, 270
-mno-wavefrontsize64

command line option, 270
-munsafe-fp-atomics

command line option, 270
-mwavefrontsize64

command line option, 270

offload-arch command line option, 278

offload-arch command line option, 278
-V

offload-arch command line option, 278
-X

command line option, 270

C

command line option
--gpu-max-threads-per-block, 270
--offload-arch, 270
-ffast-math, 270
-fgpu-rdc, 270
-fno-gpu-rdc, 270
-fopenmp, 270
-fopenmp-targets, 270
-g, 270
-mcumode, 270
-mno-wavefrontsize64, 270
-munsafe-fp-atomics, 270
-mwavefrontsize64, 270
-x, 270

O

offload-arch command line option
-a, 278
-c, 278
-f, 278
-m, 278
-n, 278
-t, 278
-v, 278

INDEX

451

	What is ROCm?
	ROCm on Radeon
	ROCm on Windows
	ROCm release versioning
	Windows Documentation implications
	Windows Builds from Source

	Quick Start (Linux)
	Add Repositories
	Install drivers
	Install ROCm runtimes
	Reboot the system

	Deploy ROCm on Linux
	Prepare to Install
	Choose your install method
	See Also
	ROCm Installation Options (Linux)
	Package Manager versus AMDGPU Installer?
	Single Version ROCm install versus Multi-Version
	Single-version Installation
	Multi-version Installation

	Installation Prerequisites (Linux)
	Confirm the System Has a Supported Linux Distribution Version
	Check the Linux Distribution and Kernel Version on Your System
	Linux Distribution Information
	Kernel Information

	Additional package repositories
	Kernel headers and development packages
	Setting Permissions for Groups

	Installation via Package manager
	See Also
	Installation (Linux)
	Understanding the Release-specific AMDGPU and ROCm Repositories on Linux Distributions
	Step by Step Instructions
	Post-install Actions and Verification Process
	Post-install Actions
	Verifying Kernel-mode Driver Installation
	Verifying ROCm Installation
	Verifying Package Installation

	Upgrade ROCm with the package manager
	Upgrade Steps
	Update the AMDGPU repository
	Upgrade the kernel-mode driver & reboot
	Update the ROCm repository
	Upgrade the ROCm packages

	Verification Process

	Uninstallation with package manager (Linux)
	Package Manager Integration
	ROCm Package Naming Conventions
	Components of ROCm Programming Models
	Packages in ROCm Programming Models

	AMDGPU Install Script
	See Also
	Installation with install script
	Download the Installer Script
	Use cases
	Single-version ROCm Installation
	Multi-version ROCm Installation
	Add Required Repositories
	Install packages

	Additional options
	Unattended installation
	Skipping kernel mode driver installation

	Upgrading with the Installer Script (Linux)
	Installer Script Uninstallation (Linux)

	Quick Start (Windows)
	System Requirements
	HIP SDK Installation
	Download the installer
	Launching the installer
	Customizing the install
	HIP SDK Installer
	AMD Display Driver

	Installing Components
	Installation Complete

	Uninstallation

	Install ROCm (HIP SDK) on Windows
	Prepare to Install
	Choose your install method
	Post Installation
	See Also
	Installation Prerequisites (Windows)
	Confirm the System Is Supported
	Check the Windows Editions and Update Version on Your System
	Command Line Check
	Graphical Check

	Graphical Installation
	See Also
	Installation Using the Graphical Interface
	System Requirements
	HIP SDK Installation
	Download the installer
	Launching the installer
	Customizing the install
	HIP SDK Installer
	AMD Display Driver

	Installing Components
	Installation Complete

	Upgrading Using the Graphical Interface
	Uninstallation Using the Graphical Interface
	Uninstallation

	Command Line Installation
	See Also
	Installation Using the Command Line Interface
	System Requirements
	HIP SDK Installation
	Launching the Installer From the Command Line

	Upgrading Using the Graphical Interface
	HIP SDK Upgrade

	Uninstallation Using the Command Line Interface
	HIP SDK Uninstallation
	Launching the Installer From the Command Line

	Deploy ROCm Docker containers
	Prerequisites
	Accessing GPUs in containers
	Restricting a container to a subset of the GPUs
	Additional Options

	Docker images in the ROCm ecosystem
	Base images
	Applications

	Release Notes
	ROCm 5.7.1
	What’s New in This Release
	ROCm Libraries
	rocBLAS
	HIP 5.7.1 (for ROCm 5.7.1)

	Fixed defects
	Library Changes in ROCM 5.7.1
	hipSOLVER 1.8.2
	Fixed

	Changelog
	ROCm 5.7.1
	What’s New in This Release
	ROCm Libraries
	rocBLAS
	HIP 5.7.1 (for ROCm 5.7.1)

	Fixed defects
	Library Changes in ROCM 5.7.1
	hipSOLVER 1.8.2
	Fixed

	ROCm 5.7.0
	Release Highlights for ROCm 5.7
	AMD Instinct™ MI50 End of Support Notice
	Feature Updates
	Non-hostcall HIP Printf
	Beta Release of LLVM Address Sanitizer (ASAN) with the GPU

	Fixed Defects
	HIP 5.7.0
	Optimizations
	Added
	Changed
	Fixed
	Known Issues
	Upcoming changes for HIP in ROCm 6.0 release

	Library Changes in ROCM 5.7.0
	hipBLAS 1.1.0
	Changed
	Dependencies

	hipCUB 2.13.1
	Changed
	Known Issues

	hipFFT 1.0.12
	Added
	Changed

	hipSOLVER 1.8.1
	Changed

	hipSPARSE 2.3.8
	Improved

	MIOpen 2.19.0
	Added
	Changed
	Fixed

	RCCL 2.17.1-1
	Changed
	Added
	Fixed

	rocALUTION 2.1.11
	Added
	Improved

	rocBLAS 3.1.0
	Added
	Fixed
	Changed
	Deprecated
	Dependencies

	rocFFT 1.0.24
	Optimizations
	Added
	Changed

	rocm-cmake 0.10.0
	Added

	rocPRIM 2.13.1
	Changed
	Fixed

	rocRAND 2.10.17
	Added
	Changed

	rocSOLVER 3.23.0
	Added
	Fixed
	Changed

	rocSPARSE 2.5.4
	Added
	Improved
	Known Issues

	rocThrust 2.18.0
	Fixed
	Changed

	rocWMMA 1.2.0
	Changed

	Tensile 4.38.0
	Added
	Optimizations
	Changed
	Fixed

	ROCm 5.6.1
	What’s New in This Release

	HIP 5.6.1 (for ROCm 5.6.1)
	Fixed Defects
	Library Changes in ROCM 5.6.1
	hipSPARSE 2.3.7
	Bugfix

	ROCm 5.6.0
	Release Highlights
	OS and GPU Support Changes
	AMDSMI CLI 23.0.0.4
	Added
	Known Issues

	Kernel Modules (DKMS)
	Fixes

	HIP 5.6 (For ROCm 5.6)
	Optimizations
	Added
	Changed
	Fixed
	Known Issues
	Upcoming changes in future release

	ROCgdb-13 (For ROCm 5.6.0)
	Optimized

	ROCprofiler (For ROCm 5.6.0)
	Optimized
	Added
	Fixed

	Library Changes in ROCM 5.6.0
	hipBLAS 1.0.0
	Changed
	Removed
	Deprecated

	hipCUB 2.13.1
	Added
	Changed
	Known Issues

	hipFFT 1.0.12
	Added
	Changed

	hipSOLVER 1.8.0
	Added

	hipSPARSE 2.3.6
	Added
	Changed

	MIOpen 2.19.0
	Added
	Changed
	Fixed

	rccl 2.15.5
	Changed
	Added
	Fixed
	Removed

	rocALUTION 2.1.9
	Improved

	rocBLAS 3.0.0
	Optimizations
	Added
	Deprecated
	Removed
	Dependencies
	Fixed
	Changed

	rocFFT 1.0.23
	Added
	Changed
	Fixed

	rocm-cmake 0.9.0
	Added

	rocPRIM 2.13.0
	Added
	Changed
	Known Issues

	rocRAND 2.10.17
	Added
	Changed

	rocSOLVER 3.22.0
	Added
	Optimized
	Fixed

	rocSPARSE 2.5.2
	Improved

	rocThrust 2.18.0
	Fixed
	Changed

	rocWMMA 1.1.0
	Added
	Changed

	Tensile 4.37.0
	Added
	Optimizations
	Changed
	Fixed

	ROCm 5.5.1
	What’s New in This Release
	HIP SDK for Windows
	HIP API Change
	hipDeviceSetCacheConfig

	Library Changes in ROCM 5.5.1

	ROCm 5.5.0
	What’s New in This Release
	HIP Enhancements
	Enhanced Stack Size Limit
	hipcc Changes
	Future Changes
	New HIP APIs in This Release
	Memory Management HIP APIs
	Module Management HIP APIs
	HIP Graph Management APIs

	OpenMP Enhancements

	Deprecations and Warnings
	HIP Deprecation
	Linux Filesystem Hierarchy Standard for ROCm
	New Filesystem Hierarchy
	Backward Compatibility with Older Filesystems
	Wrapper header files
	Library files
	CMake Config files

	ROCm Support For Code Object V3 Deprecated
	Comgr V3.0 Changes
	API Changes
	Actions and Data Types

	Deprecated Environment Variables

	Known Issues In This Release
	DISTRIBUTED/TEST_DISTRIBUTED_SPAWN Fails
	Failures In HIP Directed Tests

	Library Changes in ROCM 5.5.0
	hipBLAS 0.54.0
	Added
	Fixed
	Changed

	hipCUB 2.13.1
	Added
	Changed
	Fixed
	Known Issues

	hipFFT 1.0.11
	Fixed

	hipSOLVER 1.7.0
	Added

	hipSPARSE 2.3.5
	Improved

	MIOpen 2.19.0
	Added
	Changed
	Fixed

	rccl 2.15.5
	Changed
	Added
	Fixed
	Removed

	rocALUTION 2.1.8
	Added
	Improved
	Changed

	rocBLAS 2.47.0
	Added
	Optimizations
	Fixed
	Changed
	Removed

	rocFFT 1.0.22
	Optimizations
	Added
	Changed
	Fixed

	rocm-cmake 0.8.1
	Fixed
	Changed

	rocPRIM 2.13.0
	Added
	Changed
	Known Issues
	Fixed

	rocRAND 2.10.17
	Added
	Changed
	Fixed

	rocSOLVER 3.21.0
	Added
	Optimized
	Changed
	Fixed

	rocSPARSE 2.5.1
	Added
	Improved
	Known Issues

	rocWMMA 1.0
	Added
	Changed

	Tensile 4.36.0
	Added
	Optimizations
	Changed
	Fixed

	ROCm 5.4.3
	Deprecations and Warnings
	HIP Perl Scripts Deprecation
	Linux Filesystem Hierarchy Standard for ROCm
	New Filesystem Hierarchy
	Backward Compatibility with Older Filesystems
	Wrapper header files
	Library files
	CMake Config files

	Fixed Defects
	Compiler Improvements

	Known Issues
	Compiler Option Error at Runtime

	Library Changes in ROCM 5.4.3
	rocFFT 1.0.21
	Fixed

	ROCm 5.4.2
	Deprecations and Warnings
	HIP Perl Scripts Deprecation
	hipcc Options Deprecation

	Known Issues
	Library Changes in ROCM 5.4.2

	ROCm 5.4.1
	What’s New in This Release
	HIP Enhancements
	New HIP API - hipLaunchHostFunc

	Deprecations and Warnings
	HIP Perl Scripts Deprecation

	IFWI Fixes
	AMD Instinct™ MI200 SRIOV Virtualization Support

	Library Changes in ROCM 5.4.1
	rocFFT 1.0.20
	Fixed

	ROCm 5.4.0
	What’s New in This Release
	HIP Enhancements
	Support for Wall Clock64
	New Registry Added for GPU_MAX_HW_QUEUES

	New HIP APIs in This Release
	Error Handling
	HIP Tests Source Separation

	OpenMP Enhancements
	Deprecations and Warnings
	HIP Perl Scripts Deprecation
	Linux Filesystem Hierarchy Standard for ROCm
	New Filesystem Hierarchy
	Backward Compatibility with Older Filesystems
	Wrapper header files
	Library files
	CMake Config files

	Fixed Defects
	Memory Allocated Using hipHostMalloc() with Flags Did Not Exhibit Fine-Grain Behavior
	Issue
	Fix

	SoftHang with hipStreamWithCUMask test on AMD Instinct™
	Issue
	Fix

	ROCm Tools GPU IDs

	Library Changes in ROCM 5.4.0
	hipBLAS 0.53.0
	Added

	hipCUB 2.13.0
	Added
	Changed

	hipFFT 1.0.10
	Added
	Changed

	hipSOLVER 1.6.0
	Added

	hipSPARSE 2.3.3
	Added
	Changed

	rccl 2.13.4
	Changed
	Fixed

	rocALUTION 2.1.3
	Added
	Improved
	Changed

	rocBLAS 2.46.0
	Added
	Optimized
	Changed
	Fixed

	rocFFT 1.0.19
	Optimizations
	Added
	Changed

	rocPRIM 2.12.0
	Changed
	Removed
	Fixed

	rocRAND 2.10.16
	Added
	Changed
	Fixed

	rocSOLVER 3.20.0
	Added
	Changed

	rocSPARSE 2.4.0
	Added
	Improved

	rocThrust 2.17.0
	Added

	rocWMMA 0.9
	Added
	Changed

	Tensile 4.35.0
	Added
	Optimizations
	Changed
	Fixed

	ROCm 5.3.3
	Fixed Defects
	Issue with rocTHRUST and rocPRIM Libraries

	Library Changes in ROCM 5.3.3

	ROCm 5.3.2
	Fixed Defects
	Peer-to-Peer DMA Mapping Errors with SLES and RHEL
	RCCL Tuning Table
	SGEMM (F32 GEMM) Routines in rocBLAS

	Known Issues
	AMD Instinct™ MI200 SRIOV Virtualization Issue
	AMD Instinct™ MI200 Firmware Updates
	Known Issue with rocThrust and rocPRIM Libraries

	Library Changes in ROCM 5.3.2

	ROCm 5.3.0
	Deprecations and Warnings
	HIP Perl Scripts Deprecation
	Linux Filesystem Hierarchy Standard for ROCm
	New Filesystem Hierarchy
	Backward Compatibility with Older Filesystems
	Wrapper header files
	Library files
	CMake Config files

	Fixed Defects
	Kernel produces incorrect results with ROCm 5.2

	Known Issues
	Issue with OpenMP-Extras Package Upgrade
	AMD Instinct™ MI200 SRIOV Virtualization Issue
	System Crash when IMMOU is Enabled

	Library Changes in ROCM 5.3.0
	hipBLAS 0.52.0
	Added
	Fixed

	hipCUB 2.12.0
	Added
	Changed

	hipFFT 1.0.9
	Changed

	hipSOLVER 1.5.0
	Added
	Changed
	Fixed

	hipSPARSE 2.3.1
	Added

	rocALUTION 2.1.0
	Added
	Improved

	rocBLAS 2.45.0
	Added
	Optimizations
	Changed
	Fixed
	Deprecated
	Removed

	rocFFT 1.0.18
	Changed
	Optimizations
	Fixed

	rocm-cmake 0.8.0
	Fixed
	Changed

	rocPRIM 2.11.0
	Added

	rocRAND 2.10.15
	Changed

	rocSOLVER 3.19.0
	Added
	Changed
	Removed
	Fixed

	rocThrust 2.16.0
	Changed

	rocWMMA 0.8
	Tensile 4.34.0
	Added
	Optimizations
	Changed
	Fixed

	ROCm 5.2.3
	Changes in This Release
	Ubuntu 18.04 End of Life Announcement
	HIP Runtime
	Fixes

	RCCL
	Added
	Removed

	Development Tools

	Library Changes in ROCM 5.2.3
	rccl 2.12.10
	Added
	Removed

	ROCm 5.2.1
	Library Changes in ROCM 5.2.1

	ROCm 5.2.0
	What’s New in This Release
	HIP Enhancements
	HIP Installation Guide Updates
	Support for device-side malloc on HIP-Clang
	New HIP APIs in This Release
	Device management HIP APIs
	New HIP Runtime APIs in Memory Management
	HIP Graph Management APIs
	Support for Virtual Memory Management APIs

	Planned HIP Changes in Future Releases

	OpenMP Enhancements in This Release
	OMPT Target Support

	Deprecations and Warnings
	Linux Filesystem Hierarchy Standard for ROCm
	New Filesystem Hierarchy
	Backward Compatibility with Older Filesystems
	Wrapper header files
	Library files
	CMake Config files

	Planned deprecation of hip-rocclr and hip-base packages

	Fixed Defects
	Known Issues
	Compiler Error on gfx1030 When Compiling at -O0
	Issue
	Workaround

	System Freeze Observed During CUDA Memtest Checkpoint
	Issue
	Workaround

	HPC test fails with the “HSA_STATUS_ERROR_MEMORY_FAULT” error
	Issue
	Workaround

	Kernel produces incorrect result
	Issue
	Workaround

	Issue with Applications Triggering Oversubscription

	Library Changes in ROCM 5.2.0
	hipBLAS 0.51.0
	Added
	Fixed

	hipCUB 2.11.1
	Added

	hipFFT 1.0.8
	Added

	hipSOLVER 1.4.0
	Added
	Fixed

	hipSPARSE 2.2.0
	Added

	rocALUTION 2.0.3
	Added

	rocBLAS 2.44.0
	Added
	Optimizations
	Changed
	Fixed
	Removed

	rocFFT 1.0.17
	Added
	Changed
	Optimizations
	Fixed

	rocPRIM 2.10.14
	Added

	rocRAND 2.10.14
	Added

	rocSOLVER 3.18.0
	Added
	Fixed

	rocSPARSE 2.2.0
	Added
	Improved
	Changed
	Known Issues

	rocThrust 2.15.0
	Added

	rocWMMA 0.7
	Added
	Changed

	Tensile 4.33.0
	Added
	Optimizations
	Changed
	Fixed

	ROCm 5.1.3
	Library Changes in ROCM 5.1.3

	ROCm 5.1.1
	Library Changes in ROCM 5.1.1

	ROCm 5.1.0
	What’s New in This Release
	HIP Enhancements
	HIP Installation Guide Updates
	Support for HIP Graph
	Planned Changes for HIP in Future Releases
	Separation of hiprtc (libhiprtc) library from hip runtime (amdhip64)
	hipDeviceProp_t Structure Enhancements

	ROCDebugger Enhancements
	Multi-language Source Level Debugger
	Machine Interface Lanes Support
	Enhanced - clone-inferior Command

	MIOpen Support for RDNA GPUs
	Checkpoint Restore Support With CRIU

	Fixed Defects
	Driver Fails To Load after Installation
	ROCDebugger Fixed Defects
	Breakpoints in GPU kernel code Before Kernel Is Loaded
	Registers Invalidated After Write
	Scheduler-locking and GPU Wavefronts
	ROCDebugger Fails Before Completion of Kernel Execution

	Known Issues
	Random Memory Access Fault Errors Observed While Running Math Libraries Unit Tests
	CU Masking Causes Application to Freeze
	Failed Checkpoint in Docker Containers
	Issue with Restoring Workloads Using Cooperative Groups Feature
	Radeon Pro V620 and W6800 Workstation GPUs
	No Support for ROCDebugger on SRIOV

	Random Error Messages in ROCm SMI for SR-IOV

	Library Changes in ROCM 5.1.0
	hipBLAS 0.50.0
	Added
	Fixed
	Changed

	hipCUB 2.11.0
	Added
	Changed

	hipFFT 1.0.7
	Changed

	hipSOLVER 1.3.0
	Added
	Changed
	Fixed

	hipSPARSE 2.1.0
	Added
	Changed
	Improved
	Known Issues

	rccl 2.11.4
	Added
	Known Issues

	rocALUTION 2.0.2
	Added

	rocBLAS 2.43.0
	Added
	Optimizations
	Changed
	Fixed

	rocFFT 1.0.16
	Changed
	Optimizations
	Fixed
	Removed

	rocPRIM 2.10.13
	Fixed
	Added
	Changed
	Known Issues

	rocRAND 2.10.13
	Added
	Changed
	Fixed
	Known Issues

	rocSOLVER 3.17.0
	Optimized
	Fixed

	rocSPARSE 2.1.0
	Added
	Improved
	Known Issues

	rocThrust 2.14.0
	Added
	Known Issues

	Tensile 4.32.0
	Added
	Optimized
	Changed
	Removed

	ROCm 5.0.2
	Fixed Defects
	Issue with hostcall Facility in HIP Runtime

	Library Changes in ROCM 5.0.2

	ROCm 5.0.1
	Deprecations and Warnings
	Refactor of HIPCC/HIPCONFIG

	Library Changes in ROCM 5.0.1

	ROCm 5.0.0
	What’s New in This Release
	HIP Enhancements
	HIP Installation Guide Updates
	Managed Memory Allocation

	New Environment Variable

	Breaking Changes
	Runtime Breaking Change

	Known Issues
	Incorrect dGPU Behavior When Using AMDVBFlash Tool
	Issue with START Timestamp in ROCProfiler
	Issue
	Current behavior
	Expected behavior
	Recommended Workaround

	Radeon Pro V620 and W6800 Workstation GPUs
	No Support for SMI and ROCDebugger on SRIOV

	Deprecations and Warnings
	ROCm Libraries Changes – Deprecations and Deprecation Removal
	HIP API Deprecations and Warnings
	Warning - Arithmetic Operators of HIP Complex and Vector Types

	Warning - Compiler-Generated Code Object Version 4 Deprecation
	Warning - MIOpenTensile Deprecation

	Library Changes in ROCM 5.0.0
	hipBLAS 0.49.0
	Added
	Fixed

	hipCUB 2.10.13
	Fixed
	Added
	Changed

	hipFFT 1.0.4
	Fixed
	Added

	hipSOLVER 1.2.0
	Added
	Fixed

	hipSPARSE 2.0.0
	Added

	rccl 2.10.3
	Added
	Known Issues

	rocALUTION 2.0.1
	Changed
	Improved

	rocBLAS 2.42.0
	Added
	Optimizations
	Changed
	Fixed

	rocFFT 1.0.13
	Optimizations
	Added
	Fixed

	rocPRIM 2.10.12
	Fixed
	Added
	Changed
	Known Issues

	rocRAND 2.10.12
	Changed

	rocSOLVER 3.16.0
	Added
	Optimized
	Changed
	Fixed

	rocSPARSE 2.0.0
	Added
	Changed
	Improved

	rocThrust 2.13.0
	Added
	Changed

	Tensile 4.31.0
	Added
	Optimized
	Changed
	Removed
	Fixed

	GPU Support and OS Compatibility (Linux)
	Supported Linux Distributions
	Virtualization Support
	Linux Supported GPUs
	Support Status

	CPU Support

	GPU and OS Support (Windows)
	Supported SKUs
	Windows Supported GPUs
	Component Support
	Support Status

	CPU Support

	ROCm Release History
	Compatibility
	User/Kernel-Space Support Matrix
	Docker image support matrix
	3rd Party Support Matrix
	Deep Learning
	Communication libraries
	Algorithm libraries

	Licensing Terms
	Package Licensing

	All Reference Material
	ROCm Software Groups

	HIP
	HIP Runtime
	Porting tools

	Math Libraries
	rocLIB vs. hipLIB
	Linear Algebra Libraries
	Fast Fourier Transforms
	Random Numbers

	C++ Primitive Libraries
	Communication Libraries
	AI Libraries
	Computer Vision
	OpenMP Support in ROCm
	Introduction
	Installation

	OpenMP: Usage
	Using rocprof with OpenMP
	Using Tracing Options
	Environment Variables

	OpenMP: Features
	Asynchronous Behavior in OpenMP Target Regions
	Unified Shared Memory
	Prerequisites
	Xnack Capability
	Unified Shared Memory Pragma

	OMPT Target Support
	Floating Point Atomic Operations
	Address Sanitizer (ASan) Tool
	Clang Compiler Option for Kernel Optimization
	Specialized Kernels
	No-Loop Kernel Generation
	Big-Jump-Loop Kernel Generation
	Xteam Optimized Reduction Kernel Generation

	Compilers and Tools
	See Also
	Compiler Reference Guide
	Introduction to Compiler Reference Guide
	ROCm Compiler Interfaces

	Compiler Options and Features
	AMD GPU Compilation
	AMD Optimizations for Zen Architectures
	-famd-opt
	-fstruct-layout=[1,2,3,4,5,6,7]
	-fitodcalls
	-fitodcallsbyclone
	-fremap-arrays
	-finline-aggressive
	-fnt-store (non-temporal store)
	-fnt-store=aggressive
	Optimizations Through Driver -mllvm <options>
	-enable-partial-unswitch
	-aggressive-loop-unswitch
	-enable-strided-vectorization
	-enable-epilog-vectorization
	-enable-redundant-movs
	-merge-constant
	-function-specialize
	-lv-function-specialization
	-enable-vectorize-compares
	-inline-recursion=[1,2,3,4]
	-reduce-array-computations=[1,2,3]
	-global-vectorize-slp={true,false}
	-region-vectorize
	-enable-x86-prefetching
	-suppress-fmas
	-enable-icm-vrp
	-loop-splitting
	-enable-ipo-loop-split
	-compute-interchange-order
	-convert-pow-exp-to-int={true,false}
	-do-lock-reordering={none,normal,aggressive}
	-fuse-tile-inner-loop
	-Hz,1,0x1 [Fortran]

	Inline ASM Statements
	Miscellaneous OpenMP Compiler Features
	Offload-arch Tool
	Command-Line Simplification Using offload-arch Flag
	Target ID Support for OpenMP
	Multi-image Fat Binary for OpenMP
	Unified Shared Memory (USM)

	Support Status of Other Clang Options

	Management Tools
	Validation Tools
	All Explanation Material
	ROCm Compilers Disambiguation
	Compiler Terms

	Using CMake
	Finding Dependencies
	Using HIP in CMake
	Using the HIP single-source programming model
	Consuming ROCm C/C++ Libraries
	Consuming the HIP API in C++ code
	Compiling device code in C++ language mode
	ROCm CMake Packages

	Using CMake Presets
	Using HIP with presets

	ROCm FHS Reorganization
	Introduction
	Adopting the Linux foundation Filesystem Hierarchy Standard (FHS)
	Changes From Earlier ROCm Versions
	ROCm FHS Reorganization: Backward Compatibility
	Wrapper Header Files
	Executable Files
	Library Files
	CMake Config Files

	Changes Required in Applications Using ROCm
	Changes in Versioning Specifications

	GPU Isolation Techniques
	Environment Variables
	ROCR_VISIBLE_DEVICES
	GPU_DEVICE_ORDINAL
	HIP_VISIBLE_DEVICES
	CUDA_VISIBLE_DEVICES
	OMP_DEFAULT_DEVICE

	Docker
	GPU Passthrough to Virtual Machines

	GPU Architectures
	Architecture Guides
	ISA Documentation
	White Papers
	AMD Instinct Hardware
	AMD CDNA 2 Micro-architecture
	Node-level Architecture

	MI200 Performance Counters and Metrics
	MI200 Performance Counters List
	Graphics Register Bus Management (GRBM)
	GRBM Counters

	Command Processor (CP)
	Command Processor - Fetcher (CPF)
	CPF Counters

	Command Processor - Compute (CPC)
	CPC Counters

	Shader Processor Input (SPI)
	SPI Counters

	Compute Unit
	Instruction Mix
	MFMA Operation Counters
	Level Counters
	Wavefront Counters
	Wavefront Cycle Counters
	Local Data Share
	Miscellaneous
	Local Data Share

	L1I and sL1D Caches
	L1I and sL1D Caches

	Vector L1 Cache Subsystem
	Texture Addressing Unit
	Texture Addressing Unit Counters

	Texture Data Unit
	Texture Data Unit Counters

	Vector L1D Cache
	Texture Cache Arbiter (TCA)

	L2 Cache Access
	L2 Cache Access Counters

	MI200 Derived Metrics List
	Derived Metrics on MI200 GPUs

	Abbreviations
	MI200 Abbreviations

	AMD Instinct™ MI100 Hardware
	System Architecture
	Micro-architecture

	Using the LLVM Address Sanitizer (ASAN) on the GPU
	Compile for Address Sanitizer
	About Compilation Time

	Use AMD Supplied Address Sanitizer Instrumented Libraries
	Running Address Sanitizer Instrumented Applications
	Preparing to Run an Instrumented Application

	Runtime Overhead
	Higher Execution Time
	Higher Memory Use

	Runtime Reporting
	Running with rocgdb
	Using Address Sanitizer with a Short HIP Application (LINK NEEDED HERE)
	Known Issues with Using GPU Sanitizer
	How ROCm uses PCIe Atomics
	ROCm PCIe Feature and Overview BAR Memory
	BAR Memory Overview

	Excepts form Overview of Changes to PCI Express 3.0
	By Mike Jackson, Senior Staff Architect, MindShare, Inc.
	Atomic Operations – Goal:
	ID-based Ordering – Goal:

	All How-To Material
	Tuning Guides
	High Performance Computing
	Workstation
	MI200 High Performance Computing and Tuning Guide
	System Settings
	System BIOS Settings
	NBIO Link Clock Frequency
	Memory Configuration

	Operating System Settings
	CPU Core State - “C States”
	AMD-IOPM-UTIL
	Systems with 256 CPU Threads - IOMMU Configuration

	System Management
	Hardware Verification with ROCm
	Testing Inter-device Bandwidth

	MI100 High Performance Computing and Tuning Guide
	System Settings
	System BIOS Settings
	NBIO Link Clock Frequency
	Memory Configuration

	Operating System Settings
	CPU Core State - “C States”
	AMD-IOPM-UTIL
	Systems with 256 CPU Threads - IOMMU Configuration

	System Management
	Hardware Verification with ROCm
	Testing Inter-device Bandwidth

	RDNA2 Workstation Tuning Guide
	System Settings
	System BIOS Settings
	Operating System Settings
	Guest OS installation

	Deep Learning Guide
	Frameworks Installation
	Magma Installation for ROCm
	MAGMA for ROCm
	Using MAGMA for PyTorch
	Build MAGMA from Source

	References

	PyTorch Installation for ROCm
	PyTorch
	Installing PyTorch
	Option 1 (Recommended): Use Docker Image with PyTorch Pre-Installed
	Option 2: Install PyTorch Using Wheels Package
	Option 3: Install PyTorch Using PyTorch ROCm Base Docker Image
	Option 4: Install Using PyTorch Upstream Docker File

	Test the PyTorch Installation
	Run a Basic PyTorch Example

	Using MIOpen kdb files with ROCm PyTorch wheels
	References

	TensorFlow Installation for ROCm
	TensorFlow
	Installing TensorFlow
	Option 1: Install TensorFlow Using Docker Image
	Option 2: Install TensorFlow Using Wheels Package

	Test the TensorFlow Installation
	Run a Basic TensorFlow Example

	References

	GPU-Enabled MPI
	Building UCX
	Install UCX
	Install Open MPI
	ROCm-enabled OSU
	Intra-node Run
	Collective Operations

	System Debugging Guide
	ROCm Language and System Level Debug, Flags, and Environment Variables
	ROCr Error Code
	Command to Dump Firmware Version and Get Linux Kernel Version
	Debug Flags
	ROCr Level Environment Variables for Debug
	Turn Off Page Retry on GFX9/Vega Devices
	HIP Environment Variables 3.x
	OpenCL Debug Flags

	PCIe-Debug

	Machine Learning, Deep Learning, and Artificial Intelligence
	Inception V3 with PyTorch
	Deep Learning Training
	Training Phases
	Case Studies
	Inception v3 with PyTorch
	Evaluating a Pre-Trained Model
	Training Inception v3

	Custom Model with CIFAR-10 on PyTorch
	Case Study: TensorFlow with Fashion MNIST
	Case Study: TensorFlow with Text Classification

	References

	Inference Optimization with MIGraphX
	Inference
	MIGraphX Introduction
	Installing MIGraphX
	Option 1: Installing Binaries
	Option 2: Building from Source
	Option 3: Use Docker

	MIGraphX Example
	MIGraphX Python API

	MIGraphX C++ API
	Tuning MIGraphX
	YModel
	YModel Example

	About ROCm Documentation
	rocm-docs-core
	Sphinx
	Read the Docs
	Doxygen
	Breathe
	MyST
	Sphinx External TOC
	Sphinx Book Theme
	Sphinx Design

	Contributing to ROCm Docs
	Supported Formats
	Filenames and folder structure
	Language and Style
	More
	Building Documentation
	Pull Request documentation builds
	Build documentation from the Command Line
	Build documentation using Visual Studio (VS) Code
	Configuring VS Code

	How to provide feedback for ROCm documentation
	Pull Request
	GitHub Discussions
	GitHub Issue
	Email

	License
	Index

